首页> 外文学位 >Evaluating Landsat 8 Satellite Sensor Data for Improved Vegetation Mapping Accuracy of the New Hampshire Coastal Watershed Area.
【24h】

Evaluating Landsat 8 Satellite Sensor Data for Improved Vegetation Mapping Accuracy of the New Hampshire Coastal Watershed Area.

机译:评估Landsat 8卫星传感器数据以提高新罕布什尔州沿海集水区的植被测绘精度。

获取原文
获取原文并翻译 | 示例

摘要

Remote sensing is a technology that has been used for many years to generate land cover maps. These maps provide insight as to the landscape, and features that are on the ground. One way in which this is useful is through the visualization of forest cover types. The forests of New England have been notoriously difficult to map, due to their high complexity and fine-scale heterogeneity. In order to be able to better map these features, the newest satellite imagery available may be the best technology to use. Landsat 8 is the newest satellite created by a team of scientists and engineers from the United States Geological Survey and the National Aeronautics and Space Administration, and was launched in February of 2013.;The Landsat 8 satellite sensor is considered an improvement over previous Landsat sensors, as it has three additional bands: (1) a coastal/ aerosol band, band 1, that senses light in deep blue, (2) a cirrus band, band 9, that provides detection of wispy clouds that may interfere with analysis, and (3) a Quality Assessment band whose bits contain information regarding conditions that may affect the quality and applicability of certain image pixels. In addition to these added bands, the data generated by Landsat 8 are delivered at an increased radiometric resolution compared with previous Landsat sensors, increasing the dynamic range of the data the sensor can retrieve.;In order to investigate the satellite sensor data, a novel approach to classifying Landsat 8 imagery was used. Object-Based Image Analysis was employed, along with the random forest machine learning classifier, to segment and classify the land cover of the Coastal Watershed of southeastern New Hampshire. In order to account strictly for band improvements, supervised classification using the maximum likelihood classifier was completed, on imagery created: (1) using all of the original bands provided by Landsat 8, and (2) an image created using Landsat 8 bands that were only available on the previous Landsat sensor (Landsat 7). Once classification had been performed, traditional and area-based accuracy assessments were implemented. Comparison measures were also calculated (i.e. Kappa, Z test statistic). The results from this study indicate that, while using Landsat 8 imagery is useful, the additional spectral bands provided in the Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) do not provide an improvement in vegetation classification accuracy in this study.
机译:遥感是一种已用于生成土地覆盖图多年的技术。这些地图提供了有关景观和地面特征的见解。一种有用的方法是通过森林覆盖类型的可视化。众所周知,新英格兰的森林由于其高度复杂性和精细的异质性而难以绘制地图。为了能够更好地映射这些功能,可用的最新卫星图像可能是使用的最佳技术。 Landsat 8是由美国地质调查局和美国国家航空航天局的科学家和工程师团队创建的最新卫星,于2013年2月发射; Landsat 8卫星传感器被认为是对先前Landsat传感器的改进,因为它具有三个附加波段:(1)感测深蓝色光的沿海/气溶胶波段,波段1,(2)提供探测可能干扰分析的细小云彩的卷云波段,波段9,以及(3)质量评估带,其比特包含有关可能影响某些图像像素的质量和适用性的条件的信息。除了这些附加频段外,与以前的Landsat传感器相比,由Landsat 8生成的数据以更高的辐射分辨率传递,从而增加了传感器可以检索的数据的动态范围。使用Landsat 8影像分类方法。基于对象的图像分析与随机森林机器学习分类器一起,用于对新罕布什尔州东南部沿海流域的土地覆盖进行分类和分类。为了严格考虑频段的改进,在创建的图像上完成了使用最大似然分类器的监督分类:(1)使用Landsat 8提供的所有原始频段,以及(2)使用Landsat 8频段创建的图像仅在以前的Landsat传感器(Landsat 7)上可用。分类完成后,便会进行传统的和基于区域的准确性评估。还计算了比较措施(即Kappa,Z检验统计量)。这项研究的结果表明,尽管使用Landsat 8影像是有用的,但Landsat 8实用陆地成像仪(OLI)和热红外传感器(TIRS)中提供的附加光谱带并没有改善植被分类精度。 。

著录项

  • 作者

    Ledoux, Lindsay.;

  • 作者单位

    University of New Hampshire.;

  • 授予单位 University of New Hampshire.;
  • 学科 Remote sensing.
  • 学位 M.S.
  • 年度 2015
  • 页码 109 p.
  • 总页数 109
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号