首页> 外文学位 >A phenotypic and genetic characterization of the cell adhesion molecules echinoid and friend-of-echinoid in the directed cell movements of ommatidial rotation during Drosophila eye development.
【24h】

A phenotypic and genetic characterization of the cell adhesion molecules echinoid and friend-of-echinoid in the directed cell movements of ommatidial rotation during Drosophila eye development.

机译:在果蝇眼发育过程中,细胞粘附分子类固醇和类固醇之友的行为发生在表皮旋转的定向细胞运动中。

获取原文
获取原文并翻译 | 示例

摘要

Correct development of multicellular organisms relies on the precise patterning of cells, which must respond to and interpret specific cues that instruct the cells to differentiate and often undergo directed cell movements and rearrangements to give rise to functional tissues and organs. Differential adhesion between the stationary and mobile cells permits and promotes these cellular movements, effecting patterning of cells and tissues. During Drosophila eye development, groups of cells, the ommatidial precursors, undergo a 90° rotational movement within a matrix of stationary cells, providing the cell motility readout of tissue polarity. The mechanisms that regulate ommatidial rotation are not well understood.;In order to better understand how ommatidia coordinate cell signaling and cell adhesion to regulate the directed cell movement of ommatidial rotation, I investigated the roles of two cell adhesion molecules, Echinoid (Ed) and Friend-of-Echinoid (Fred), in this process. Initially, I characterized the misrotation phenotypes resulting from loss-of-function mutations in these two genes, and used a genetic approach to ascertain that they function during larval development and cooperate to regulate rotation.;To understand the underlying mechanism by which ed and fred regulate rotation, I performed a row-by-row analysis of Ed and Fred protein localization during ommatidial rotation, and found that these proteins localize in patterns that are consistent with an affect on cell-cell adhesion. This observation led to the hypothesis that different levels of Ed or Fred in rotating vs. nonrotating cells provide a permissive environment for cell movement at the beginning of ommatidial rotation. Beginning midway through ommatidial rotation, equalizing levels of these proteins in the ommatidial cells and the interommatidial cells leads to a restrictive environment, thus slowing ommatidial rotation. In support of this hypothesis, I demonstrate that manipulating levels of these proteins and interfering with the establishment of the early permissive environment slows ommatidial rotation.;My work also provides evidence that Ed and Fred may regulate signaling in the slow phase of ommatidial rotation. Mosaic analysis identified a requirement for ed and fred in photoreceptors R1, R6, R7 and the cone cells for proper ommatidial rotation. In addition, I used a genetic approach to identify potential interactors of ed and fred in rotation, and found that both genes interact with two downstream effectors of Egf signaling: the Mapk/Pnt transcriptional output and the Cno cytoskeletal/junctional output. Furthermore, my analysis of the cno loss-of-function phenotype provides the first indication that Cno inhibits ommatidial rotation.;Egf signaling promotes ommatidial rotation, although the underlying mechanism is unclear. I hypothesize that Egfr signaling promotes ommatidial rotation by inhibiting Cno activity in the ommatidial cells. As ommatidial rotation slows, Ed and Fred cooperate to regulate the Egf receptor in R1, R6, R7 and the cone cells, and increased inhibition of the Egf receptor as Ed levels rise leads to an increase in Cno activity and the cessation of ommatidial rotation.;Using a genetic approach, I also identified the tissue polarity genes as interactors of ed and fred in rotation. Intriguingly, ed and fred specifically modify different subsets of the TP genes. Mosaic analysis of the tissue polarity gene strabismus (stbm) identified a requirement for stbm in photoreceptor R7, thus providing the first indication of a role for a tissue polarity gene outside of photoreceptors R3 and R4 to regulate some aspect of tissue polarity.
机译:多细胞生物的正确发育依赖于细胞的精确模式,该模式必须响应并解释指示细胞分化的特定线索,并经常进行定向的细胞运动和重排以产生功能组织和器官。固定细胞和移动细胞之间的差异粘附允许并促进这些细胞运动,从而影响细胞和组织的图案。在果蝇眼发育过程中,成群的细胞,即生殖细胞前体,在固定细胞的基质内进行90°旋转运动,从而提供组织极性的细胞运动读数。为了更好地了解眼炎如何协调细胞信号传导和细胞黏附以调节眼球旋转的定向细胞运动,我研究了两种细胞黏附分子-棘突类(Echinoid)和Echinoid(Ed)的作用。类E骨之友(Fred),在此过程中。最初,我对这两个基因的功能缺失突变导致的错误旋转表型进行了表征,并使用遗传方法确定了它们在幼虫发育过程中发挥功能并协同调节旋转。;了解ed和fred的潜在机制。为了调节旋转,我在卵巢旋转过程中对Ed和Fred蛋白的定位进行了逐行分析,发现这些蛋白的定位方式与对细胞-细胞粘附的影响相一致。该观察结果提出了这样的假设:旋转和非旋转细胞中不同水平的Ed或Fred在ommatidial旋转开始时为细胞运动提供了一个允许的环境。从卵母细胞旋转的中间开始,使这些蛋白质在卵母细胞和卵母细胞间的水平相等会导致限制性环境,从而减慢卵母细胞旋转。为支持该假设,我证明了操纵这些蛋白质的水平并干扰早期允许环境的建立会减慢ommatidial旋转。我的工作还提供了证据,Ed和Fred可能在ommatidial旋转的慢速阶段调节信号传导。马赛克分析确定了感光体R1,R6,R7和视锥细胞对ed和fred的要求,以使其能够进行适当的卵巢旋转。此外,我使用一种遗传方法来识别ed和fred轮流的潜在相互作用因子,发现这两个基因均与Egf信号的两个下游效应因子相互作用:Mapk / Pnt转录输出和Cno细胞骨架/连接输出。此外,我对Cno功能丧失表型的分析提供了第一个迹象,表明Cno抑制了卵巢的旋转。尽管潜在的机制尚不清楚,Egf信号却促进了卵巢的旋转。我假设Egfr信号传导通过抑制卵母细胞中的Cno活性来促进卵母细胞旋转。随着生殖细胞旋转的减慢,Ed和Fred共同调节R1,R6,R7和视锥细胞中的Egf受体,随着Ed水平的升高,对Egf受体的抑制作用增强,导致Cno活性增加,并阻止卵母细胞旋转。使用遗传方法,我还确定了组织极性基因是ed和fred在旋转中的相互作用者。有趣的是,ed和fred专门修饰了TP基因的不同子集。组织极性基因斜视(stbm)的镶嵌分析确定了感光器R7中对stbm的需求,因此首次表明了感光器R3和R4外部的组织极性基因在调节组织极性的某些方面的作用。

著录项

  • 作者

    Fetting, Jennifer Lynn.;

  • 作者单位

    Washington University in St. Louis.;

  • 授予单位 Washington University in St. Louis.;
  • 学科 Biology Genetics.;Biology Cell.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 116 p.
  • 总页数 116
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 遗传学;细胞生物学;
  • 关键词

  • 入库时间 2022-08-17 11:37:59

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号