首页> 外文学位 >Optical Metrology for Directed Self-assembly Patterning Using Mueller Matrix Spectroscopic Ellipsometry Based Scatterometry.
【24h】

Optical Metrology for Directed Self-assembly Patterning Using Mueller Matrix Spectroscopic Ellipsometry Based Scatterometry.

机译:用于基于Mueller矩阵光谱椭偏仪的散射法进行定向自组装构图的光学计量学。

获取原文
获取原文并翻译 | 示例

摘要

The semiconductor industry continues to drive patterning solutions that enable devices with higher memory storage capacity, faster computing performance, lower cost per transistors, and higher transistor density. These developments in the field of semiconductor manufacturing along with the overall minimization of the size of transistors require cutting-edge metrology tools for characterization.;Directed self-assembly (DSA) patterning process can be used to fabricate nanoscale line-space patterns and contact holes via thermodynamically driven micro-phase separation of block copolymer (BCP) films with boundary constraints from guiding templates. Its main advantages are high pattern resolution (~10 nm), high throughput, no requirement of a high-resolution mask, and compatibility with standard fab-equipment and processes. Although research into DSA patterning has demonstrated a high potential as a nanoscale patterning process, there are critical challenges that must be overcome before transferring DSA into high volume manufacturing, including achievement of low defect density and high process stability. For this, advances in critical dimension (CD) and overlay measurement as well as rapid defect characterization are required. Both scatterometry and critical dimension-scanning electron microscopy (CD-SEM) are routinely used for inline dimensional metrology. CD-SEM inspection is limited, as it does not easily provide detailed line-shape information, whereas scatterometry has the capability of measuring important feature dimensions including: line-width, line-shape, sidewall-angle, and thickness of the patterned samples quickly and non-destructively.;The present work describes the application of Mueller matrix spectroscopic ellipsometry (MMSE) based scatterometry to optically characterize DSA patterned line- space grating and contact hole structures fabricated with phase-separated polystyrene-b-polymethylmethacrylate (PS-b-PMMA) at various integration steps of BCP DSA based patterning process. This work focuses on understanding the efficacy of MMSE base scatterometry for characterizing complex DSA structures. For example, the use of symmetry-antisymmetry properties associated with Mueller matrix (MM) elements to understand the topography of the periodic nanostructures and measure defectivity. Simulations (the forward problem approach of scatterometry) are used to investigate MM elements' sensitivity to changes in DSA structure such as one vs. two contact hole patterns and predict sensitivity to dimensional changes. A regression-based approach is used to extract feature shape parameters of the DSA structures by fitting simulated optical spectra to experimental optical spectra. Detection of the DSA defects is a key to reducing defect density for eventual manufacturability and production use of DSA process. Simulations of optical models of structures containing defects are used to evaluate the sensitivity of MM elements to DSA defects. This study describes the application of MMSE to determine the DSA pattern defectivity via spectral comparisons based on optical anisotropy and depolarization. The use of depolarization and optical anisotropy for characterization of experimental MMSE data is a very recent development in scatterometry. In addition, reconstructed scatterometry models are used to calculate line edge roughness in 28 nm pitch Si fins fabricated using DSA patterning process.
机译:半导体行业继续推动构图解决方案,这些解决方案使设备具有更高的存储器存储容量,更快的计算性能,更低的每晶体管成本和更高的晶体管密度。半导体制造领域的这些发展以及总体上使晶体管尺寸最小化需要尖端的计量学工具进行表征。直接自组装(DSA)图案化工艺可用于制造纳米级线空间图案和接触孔通过热力学驱动嵌段共聚物(BCP)薄膜的微相分离,并从导向模板获得边界限制。它的主要优点是图案分辨率高(〜10 nm),吞吐量高,不需要高分辨率掩模以及与标准Fab设备和工艺的兼容性。尽管对DSA图案的研究已经证明了作为纳米级图案工艺的巨大潜力,但是在将DSA应用于大规模生产之前,仍然必须克服一些关键挑战,包括实现低缺陷密度和高工艺稳定性。为此,需要在关键尺寸(CD)和覆盖层测量以及快速缺陷表征方面取得进展。散射测量法和临界尺寸扫描电子显微镜(CD-SEM)通常用于在线尺寸计量。 CD-SEM检查是有限的,因为它不容易提供详细的线形信息,而散射测量具有快速测量重要特征尺寸的能力,这些尺寸包括:线宽,线形,侧壁角度和图案化样品的厚度本工作描述了基于Mueller矩阵椭圆偏振光谱法(MMSE)的散射法在光学上表征由相分离的聚苯乙烯-b-聚甲基丙烯酸甲酯(PS-b- PMMA)在基于BCP DSA的构图过程的各个集成步骤中。这项工作着重于了解MMSE基础散射法对表征复杂DSA结构的功效。例如,使用与Mueller矩阵(MM)元素关联的对称-反对称特性来了解周期性纳米结构的形貌并测量缺陷度。仿真(散射法的前向问题方法)用于研究MM元素对DSA结构变化(例如一对或两个接触孔图案)的敏感性,并预测对尺寸变化的敏感性。通过将模拟光谱拟合到实验光谱中,使用基于回归的方法来提取DSA结构的特征形状参数。 DSA缺陷的检测是降低缺陷密度的关键,以最终实现DSA工艺的可制造性和生产使用。包含缺陷的结构的光学模型的仿真用于评估MM元素对DSA缺陷的敏感性。这项研究描述了MMSE在基于光学各向异性和去极化的光谱比较中确定DSA模​​式缺陷的应用。使用去极化和光学各向异性来表征实验MMSE数据是散射法中的一项最新进展。另外,重建的散射测量模型用于计算使用DSA图案化工艺制造的28 nm间距Si鳍片中的线边缘粗糙度。

著录项

  • 作者

    Dixit, Dhairya J.;

  • 作者单位

    State University of New York at Albany.;

  • 授予单位 State University of New York at Albany.;
  • 学科 Optics.;Materials science.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 160 p.
  • 总页数 160
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号