首页> 外文学位 >Trade-offs in Bacterial Chemotaxis and the Adaptation of Non-Genetic Diversity.
【24h】

Trade-offs in Bacterial Chemotaxis and the Adaptation of Non-Genetic Diversity.

机译:细菌趋化性与非遗传多样性的适应之间的权衡。

获取原文
获取原文并翻译 | 示例

摘要

Cell-to-cell variability is a critical issue in biomedical science and plays a role in drug resistance of bacteria and cancer, as well as in the formation of biofilms and differentiation of stem cells. Despite its broad relevance, quantitatively understanding cellular heterogeneity from its sources to its consequences is still an open challenge. The chemotaxis system of the bacterium Escherichia coli is an ideal model for such investigations since it is very well characterized genetically and biochemically. Chemotaxis, which is cellular movement toward favorable chemical conditions, is an important behavior across microbiology and human physiology, but the impact of cell-to-cell heterogeneity on chemotaxis is mostly unexplored.;Despite sharing the same genetically-encoded machinery, individual E. coli cells exhibit substantial differences in chemotactic behaviors. Here, we characterize the consequences of this behavioral heterogeneity for population performance by using modeling, simulations, and experiments. We find that there exist trade-offs in which a single chemotactic behavior cannot perform optimally in all environmental challenges. We show that, in some cases, optimal populations can benefit from non-genetic diversity to provide specialists for different tasks. We demonstrate that this is mechanistically possible through mutations in genetic regulatory sequences that alter the distribution of protein levels in the population. We therefore propose a framework for analyzing the sources, consequences, and adaptability of non-genetic diversity wherein noisy distributions of proteins give rise to heterogeneous phenotypes, which in turn give rise to differential performance and ultimately collective fitness.
机译:细胞之间的可变性是生物医学科学中的关键问题,在细菌和癌症的耐药性以及生物膜的形成和干细胞的分化中发挥着作用。尽管具有广泛的相关性,但从数量上定量了解细胞异质性及其后果仍然是一个开放的挑战。大肠杆菌的趋化性系统是此类研究的理想模型,因为它在遗传和生化方面都有很好的表征。趋化性是细胞朝着有利的化学条件运动的过程,是微生物学和人类生理学上的重要行为,但是细胞间异质性对趋化性的影响尚待探索。尽管共享相同的基因编码机制,但个体E。大肠杆菌细胞在趋化行为上表现出实质性差异。在这里,我们通过建模,仿真和实验来表征这种行为异质性对总体绩效的影响。我们发现存在权衡,其中单一的趋化行为不能在所有环境挑战中均表现最佳。我们表明,在某些情况下,最佳群体可以从非遗传多样性中受益,从而为不同任务提供专家。我们证明这是通过遗传调控序列中的突变来改变种群中蛋白质水平分布的机制,在机械上是可能的。因此,我们提出了一个用于分析非遗传多样性的来源,后果和适应性的框架,其中蛋白质的嘈杂分布会产生异质表型,进而导致差异表现和最终的群体适应性。

著录项

  • 作者

    Frankel, Nicholas William.;

  • 作者单位

    Yale University.;

  • 授予单位 Yale University.;
  • 学科 Biology.;Physics.;Biophysics.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 129 p.
  • 总页数 129
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号