...
首页> 外文期刊>Mathematical Medicine and Biology: A Journal of the IMA >A model of strongly biased chemotaxis reveals the trade-offs of different bacterial migration strategies
【24h】

A model of strongly biased chemotaxis reveals the trade-offs of different bacterial migration strategies

机译:强烈趋化性模型揭示了不同细菌迁移策略的权衡

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Many bacteria actively bias their motility towards more favourable nutrient environments. In liquid, cells rotate their corkscrew-shaped flagella to swim, but in surface attached biofilms cells instead use grappling hook-like appendages called pili to pull themselves along. In both forms of motility, cells selectively alternate between relatively straight 'runs' and sharp reorientations to generate biased random walks up chemoattractant gradients. However, recent experiments suggest that swimming and biofilm cells employ fundamentally different strategies to generate chemotaxis: swimming cells typically suppress reorientations when moving up a chemoattractant gradient, whereas biofilm cells increase reorientations when moving down a chemoattractant gradient. The reason for this difference remains unknown. Here we develop a mathematical framework to understand how these different chemotactic strategies affect the distribution of cells at the population level. Current continuum models typically assume a weak bias in the reorientation rate and are not able to distinguish between these two strategies, so we derive a model for strong chemotaxis that resolves how both the drift and diffusive components depend on the underlying chemotactic strategy. We then test predictions from our continuum model against individual-based simulations and identify further refinements that allow our continuum model to resolve boundary effects. Our analyses reveal that the strategy employed by swimming cells yields a larger chemotactic drift, but the strategy used by biofilm cells allows them to more tightly aggregate where the chemoattractant is most abundant. This new modelling framework provides new quantitative insights into how the different chemical landscapes experienced by swimming and biofilm cells might select for divergent ways of generating chemotaxis.
机译:许多细菌积极地将其运动偏向更有利的营养环境。在液体中,细胞旋转开瓶器状鞭毛游动,但在表面附着的生物膜中,细胞改为使用抓钩状的附件(称为菌毛)将自身拉动。在两种形式的运动中,细胞选择性地在相对笔直的“游动”和急剧的重新定向之间交替,以产生偏向的随机趋化趋化因子。但是,最近的实验表明,游泳和生物膜细胞采用根本不同的策略来产生趋化性:游泳细胞通常在趋化趋化梯度向上移动时会抑制重新定向,而生物膜细胞在趋化趋化梯度向下移动时会增加重新定向。这种差异的原因仍然未知。在这里,我们建立了一个数学框架,以了解这些不同的趋化策略如何影响群体水平上细胞的分布。当前的连续模型通常假设重新定向速率的偏差较小,并且无法区分这两种策略,因此我们推导出了一种强大的趋化性模型,该模型解决了漂移和扩散成分如何依赖于基本趋化性策略的问题。然后,我们对照基于个体的模拟对连续模型的预测进行测试,并确定进一步的细化以使我们的连续模型能够解决边界效应。我们的分析表明,游泳细胞所采用的策略会产生较大的趋化漂移,但生物膜细胞所采用的策略允许它们在化学吸引剂最丰富的地方更紧密地聚集。这个新的建模框架提供了新的定量见解,以了解游泳和生物膜细胞所经历的不同化学环境如何选择产生趋化性的不同方式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号