首页> 外文学位 >Design and Optimization of Phononic Crystals and Metamaterials for Flow Control and Other Applications.
【24h】

Design and Optimization of Phononic Crystals and Metamaterials for Flow Control and Other Applications.

机译:用于流量控制和其他应用的声子晶体和超材料的设计和优化。

获取原文
获取原文并翻译 | 示例

摘要

Transmission of everyday sound and heat can be traced back to a physical particle, or wave, called a "phonon". Understanding, analyzing and manipulating phonons across multiple scales/disciplines can be achieved using phononic materials. That is a class of material systems featuring a basic pattern that repeats spatially. Among many qualities, it exhibits distinct frequency characteristics such as band gaps, where vibrational waves of certain frequencies are prohibited from propagation. These properties can benefit a multitude of applications, ranging from vibration isolation and converting waste heat into electricity to exotic concepts like acoustic cloaking. Using unit-cell design and optimization, phononic materials/devices with extraordinary properties may be realized. Since many of these applications are based on band-gap utilization, a critical design objective is to widen band-gap size or precisely synthesize its characteristics. Approaching this problem at the unit cell level is advantageous in many aspects, mostly because it provides a complete picture of the intrinsic local dynamics which is often obscured when analyzing the structure as a whole. Moreover, it is computationally less expensive than designing an entire structure. Unit-cell dispersion engineering is also scale independent; an optimized unit cell may be used to manipulate waves ranging from a few Hz to GHz, or higher, with proper scaling. In order to keep the structure/device size as small as possible, the band-gap central frequency is tuned to be as low as possible.;The objective of this thesis is to explore and advance unit-cell design and optimization of phononic materials in one, two and three-dimensions for a broad range of applications. In particular, an application for flow control is investigated where a phononic material is shown to manipulate and alter a flow field in a favorable manner. Results involving unit-cell design and coupled fluid-structure simulations (as part of a collaborative project) are presented and analyzed. The potential impact for a passive, inexpensive and practical technology for flow control is substantial. It can facilitate the delay/advancement of transition, prevention/provocation of separation and the suppression/enhancement of turbulence. A successful control scheme for one or more of these three flow phenomena will lead to drag reduction, lift enhancement, mixing augmentation and noise suppression, among other beneficial functions.
机译:日常声音和热量的传输可以追溯到物理粒子或波,称为“声子”。使用声子材料,可以实现跨多个尺度/学科的声子理解,分析和操纵。这是一类具有在空间上重复的基本图案的材料系统。在许多品质中,它表现出独特的频率特性,例如带隙,其中某些频率的振动波被禁止传播。这些特性可以使多种应用受益,从隔振到将废热转化为电能,再到诸如声波掩盖的奇特概念。使用单元格设计和优化,可以实现具有非凡性能的声子材料/器件。由于这些应用中的许多都是基于带隙利用率的,因此关键的设计目标是加宽带隙大小或精确合成其特性。在晶胞水平上解决此问题在许多方面都是有利的,主要是因为它提供了内部局部动力学的完整图景,而当分析整个结构时,常常会模糊不清。而且,它在计算上比设计整个结构便宜。晶胞分散工程也与规模无关。优化的单位单元可用于以适当的缩放比例来控制几Hz至GHz或更高范围的波。为了使结构/器件尺寸尽可能小,将带隙中心频率调整到尽可能低的水平。本论文的目的是探索和推进声子材料的单元格设计和优化。一维,二维和三维尺寸,适用于广泛的应用。特别地,研究了用于流量控制的应用,其中示出了声子材料以有利的方式操纵和改变流场。介绍并分析了涉及单元格设计和耦合流体结构模拟(作为协作项目的一部分)的结果。被动,廉价和实用的流量控制技术的潜在影响是巨大的。它可以促进过渡的延误/推进,防止/煽动分离以及抑制/增强动荡。对于这三种流动现象中的一种或多种的成功控制方案将导致减阻,升力增强,混合增强和噪声抑制以及其他有益功能。

著录项

  • 作者

    Bilal, Osama R.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Aerospace engineering.;Materials science.;Condensed matter physics.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 106 p.
  • 总页数 106
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号