首页> 外文学位 >Part I: Steady States in Two-Species Particle Aggregation Part II: Sparse Representations for Multiscale PDE.
【24h】

Part I: Steady States in Two-Species Particle Aggregation Part II: Sparse Representations for Multiscale PDE.

机译:第一部分:两种物质粒子聚集中的稳态第二部分:多尺度PDE的稀疏表示。

获取原文
获取原文并翻译 | 示例

摘要

The first part of this dissertation combines continuum limits of nonlocally interacting particles with stability analysis of nonlinear PDE to analyze the steady states of systems of pairwise-interacting particles. Models employing these assumptions cover a cornucopia of physical systems, from insect swarms and bacterial colonies to nanoparticle self-assembly. In this joint work with Theodore Kolokolnikov and Andrea Bertozzi, we study a continuum model with densities supported on co-dimension one curves for two-species particle interaction in two-dimensional Euclidean space, and apply linear stability analysis of concentric ring steady states to characterize the steady state patterns and instabilities which form. Conditions for linear well-posedness are determined and these results are compared to simulations of the discrete particle dynamics, showing predictive power of the linear theory.;Part II continues the work on the compressive spectral method, which proposes the sparse Fourier domain approximation of solutions to multiscale PDE problems by soft thresholding. In this joint work with Hayden Schaeffer and Stanley Osher, we show that the method enjoys a number of desirable numerical and analytic properties, including convergence for linear PDE and a modified equation resulting from the sparse approximation. We also extend the method to solve elliptic equations and introduce sparse approximation of differential operators in the Fourier domain. The effectiveness of the method is demonstrated on homogenization examples, where its complexity is dependent only on the sparsity of the problem and constant in many cases.
机译:本文的第一部分将非局部相互作用粒子的连续极限与非线性PDE的稳定性分析相结合,以分析成对相互作用粒子系统的稳态。采用这些假设的模型涵盖了从昆虫群和细菌菌落到纳米粒子自组装的物理系统的聚宝盆。在与Theodore Kolokolnikov和Andrea Bertozzi的联合研究中,我们研究了在二维欧几里德空间中两种物种的粒子相互作用的,共维一维曲线上支持密度的连续模型,并应用了同心环稳态的线性稳定性分析来表征形成的稳态模式和不稳定性。确定了线性适定性的条件,并将这些结果与离散粒子动力学的模拟进行了比较,显示了线性理论的预测能力。通过软阈值法解决多尺度PDE问题。在与Hayden Schaeffer和Stanley Osher的联合研究中,我们证明了该方法具有许多理想的数值和解析属性,包括线性PDE的收敛性和由稀疏近似得出的修正方程。我们还扩展了求解椭圆方程的方法,并介绍了傅立叶域中微分算子的稀疏近似。在同质化示例中证明了该方法的有效性,在该示例中,其复杂性仅取决于问题的稀疏性,并且在许多情况下是恒定的。

著录项

  • 作者

    Mackey, Alan Patrick.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 119 p.
  • 总页数 119
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号