首页> 外文学位 >Computational modeling of silicon nanoparticle synthesis in a laser-driven aerosol reactor.
【24h】

Computational modeling of silicon nanoparticle synthesis in a laser-driven aerosol reactor.

机译:激光驱动气溶胶反应器中硅纳米粒子合成的计算模型。

获取原文
获取原文并翻译 | 示例

摘要

A general two dimensional (2D) model has been developed for silicon nanoparticle synthesis by silane thermal decomposition driven by laser heating in a tubular reactor. This fully coupled model includes fluid dynamics, laser heating, gas phase and surface phase chemical reactions, and aerosol dynamics, which includes particle transport and evolution by convection, diffusion, thermophoresis, nucleation, surface growth and coagulation processes. A moment method, based upon a lognormal particle size distribution, and a sectional method are used to model the aerosol dynamics. The simulation results obtained by the two methods are compared. The sectional method is capable of capturing the bimodal behavior that occurs locally during the process, while the moment method is computationally more efficient. The effect of operating parameters, such as precursor concentration, gas phase composition, inlet gas velocity and laser power input, on the characteristics of the particles produced are investigated.;Based on the above general 2D model, another 2D model that closely simulates the silicon nanoparticle synthesis by silane thermal decomposition in the six-way cross laser-driven aerosol reactor in our lab was developed. This model incorporates fluid dynamics, laser heating, gas phase and surface phase chemical reactions, and aerosol dynamics, with particle transport and evolution by convection, diffusion, thermophoresis, nucleation, surface growth, coagulation and coalescence processes. Because of the complexity of the problem at hand, the simulation was carried out via several sub-models. First, the chemically reacting flow inside the reactor was simulated in three dimensions in full geometric detail, but with no aerosol dynamics and with highly simplified chemistry. Second, the reaction zone was simulated using an axisymmetric two dimensional CFD model, whose boundary conditions were obtained from the first step. Last, a two dimensional aerosol dynamics model was used to study the silicon nanoparticle formation using more complete silane decomposition chemistry, together with the temperature and velocities extracted from the reaction zone CFD simulation. A bivariate moment model was used to describe the evolution of particle size and morphology. The model predicted that spherical particles are produced at the center of the reaction zone, while non-spherical particle aggregates are formed at the outlet of the reaction zone. Precursor concentration, peak temperature and residence time are shown to be major parameters affecting reactor yield and the characteristics of the product particles.;Gas phase kinetics are a key component of our model of silicon nanoparticle synthesis. However, description of cluster growth to a critical nucleus size that can be treated as a solid particle can involve thousands of distinct elementary reactions. Exploration of such large reaction mechanisms is facilitated by the use of automated reaction mechanism generation, in which a computer constructs a detailed reaction mechanism according to a pre-specified set of rules. In order to utilize the silane decomposition reaction mechanisms generated in this way, one must translate the mechanism from the compact description used in automated reaction mechanism generation codes to more conventional descriptions used in reacting flow simulations. Thus, this work set up a framework for translating their mechanisms produced by automated mechanism generation software, into a form that is readily usable in our simulations. First, the string code representation of each species is translated into a bond electron matrix (BEM). Then a group additivity scheme is used to process the BEM to find out the types and quantities of the groups that make up the molecule. A straightforward walking ring finding algorithm is used to find the smallest set of independent rings with smallest sizes. At last, the thermochemical properties are estimated based on the contribution from each group at various temperatures. Those thermodynamics data in turn were fit to a standard polynomial form that can serve as input for CHEMKIN or other similar packages for calculation of thermodynamic, kinetic and transport properties. We have carried out preliminary studies using this newly translated kinetics model for modeling silicon nanoparticle synthesis by silane decomposition in a plug flow reactor with constant temperature and pressure. (Abstract shortened by UMI.)
机译:已经开发了用于在管式反应器中通过激光加热驱动的硅烷热分解来合成硅纳米粒子的通用二维(2D)模型。这种完全耦合的模型包括流体动力学,激光加热,气相和表面相化学反应以及气溶胶动力学,其中包括通过对流,扩散,热泳,成核,表面生长和凝结过程进行的颗粒传输和演化。基于对数正态粒度分布的矩量法和截面法用于模拟气溶胶动力学。比较了两种方法获得的仿真结果。分段方法能够捕获过程中局部发生的双峰行为,而矩量方法在计算上更有效。研究了诸如前驱物浓度,气相组成,入口气体速度和激光功率输入等操作参数对所产生颗粒特性的影响。;基于上述通用2D模型,另一种2D模型可以紧密模拟硅在我们实验室的六向交叉激光驱动的气溶胶反应器中,通过硅烷热分解合成纳米颗粒。该模型结合了流体动力学,激光加热,气相和表面化学反应以及气溶胶动力学,并通过对流,扩散,热泳,成核,表面生长,凝聚和聚结过程实现了颗粒的运输和演化。由于手头问题的复杂性,通过几个子模型进行了仿真。首先,在三个维度上以完整的几何细节模拟了反应器内部的化学反应流,但是没有气溶胶动力学并且化学高度简化。其次,使用轴对称二维CFD模型模拟反应区,其边界条件是从第一步获得的。最后,使用二维气溶胶动力学模型,使用更完整的硅烷分解化学方法,以及从反应区CFD模拟中提取的温度和速度,研究了硅纳米颗粒的形成。使用双变量矩模型来描述粒度和形态的演变。该模型预测球形颗粒在反应区的中心产生,而非球形颗粒聚集体在反应区的出口形成。前体浓度,峰值温度和停留时间是影响反应器产率和产物颗粒特性的主要参数。气相动力学是我们硅纳米颗粒合成模型的关键组成部分。但是,将簇生长描述为可以被视为固体颗粒的临界核大小的描述可能涉及数千种不同的基本反应。通过使用自动反应机制生成,可以促进对此类大型反应机制的探索,其中计算机根据预定的一组规则构建详细的反应机制。为了利用以这种方式生成的硅烷分解反应机理,必须将该机理从在自动反应机理生成代码中使用的紧凑描述转换为在反应流模拟中使用的更常规的描述。因此,这项工作建立了一个框架,用于将由自动机制生成软件产生的机制转换为易于在我们的模拟中使用的形式。首先,将每个物种的字符串代码表示形式转换为键电子矩阵(BEM)。然后,使用基团加和方案来处理BEM,以找出组成分子的基团的类型和数量。一种简单的步行环查找算法用于查找具有最小尺寸的最小独立环集。最后,根据各组在不同温度下的贡献估算热化学性质。这些热力学数据又适合于标准多项式形式,可以用作CHEMKIN或其他类似软件包的输入,以计算热力学,动力学和传输性质。我们已经使用此新近转换的动力学模型进行了初步研究,以模拟在恒定温度和压力下在活塞流反应器中通过硅烷分解制备硅纳米粒子的过程。 (摘要由UMI缩短。)

著录项

  • 作者

    Dang, Hongyi.;

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 213 p.
  • 总页数 213
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化工过程(物理过程及物理化学过程);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号