首页> 外文学位 >The role of interfacial processes in the photochemical dynamics of aerosols.
【24h】

The role of interfacial processes in the photochemical dynamics of aerosols.

机译:界面过程在气溶胶光化学动力学中的作用。

获取原文
获取原文并翻译 | 示例

摘要

The surface layer of an aerosol only comprises a small fraction of the aerosol's total mass. Yet, this region plays an important role in many atmospheric processes. Aerosol surfaces are gateways for chemical species transferring between the gas- and aqueous-phases, are sites where heterogeneous reactions occur, and are locations where photochemistry may occur at a faster rate than in the bulk due to an incomplete solvent-cage. The present work uses a combination of computer simulations and experiments to investigate the dynamics of the physical and chemical processes that occur at aerosol surfaces.;First, the importance of surface processes in halogen production from sea-salt aerosols is quantified through a global sensitivity analysis of a chemical kinetics computer model called MAGIC. Results show that predicted chlorine output from NaCl aerosols irradiated by UV light proceeds primarily though a surface reaction between gaseous OH and surface chloride ions. Bromine production from NaBr aerosols in the dark proceeds primarily though a surface reaction between gaseous ozone and surface bromide ions. However, when NaBr aerosols are irradiated by UV light bromine production proceeds primarily through a mechanism involving gas-phase chemistry, aqueous-phase chemistry, and mass transfer.;Next, MAGIC is used to investigate how aerosol size affects halogen production from NaCl and NaBr aerosols. Aerosol size is varied over three orders of magnitude and the mechanisms of halogen output are analyzed. Results show that the rate of halogen production depends strongly upon the surface area available for heterogeneous reactions and mass transfer.;Finally, enhanced photolysis at aerosol surfaces is investigated with a combination of experiments and Mie theory calculations. Experiments show that Mo(CO)6 in a 1-decene solvent photolyzes many orders of magnitude faster in aerosols than in a bulk solution. Mie theory calculations demonstrate that enhanced photolysis due to morphology dependent resonances cannot explain the experimental observations. Instead, the observations likely are due to the enhanced surface area of aerosols combined with a reduced solvent-cage effect at the surface compared to the bulk. Mie theory calculations also are employed to predict photolysis rate constants for NO-3aq , FeOH2+aq , and H2O2(aq) in water droplets under atmospherically relevant conditions.
机译:气雾剂的表面层仅占气雾剂总质量的一小部分。然而,该地区在许多大气过程中都起着重要作用。气溶胶表面是在气相和水相之间转移化学物种的通道,是发生异质反应的场所,并且是由于不完全的溶剂笼而发生光化学反应的速度快于整体反应的速度。本工作结合计算机模拟和实验研究气溶胶表面发生的物理和化学过程的动力学;首先,通过全球敏感性分析定量了表面过程在海盐气溶胶生产卤素中的重要性称为MAGIC的化学动力学计算机模型。结果表明,通过紫外线照射的NaCl气溶胶的预计氯输出量主要是通过气态OH与表面氯离子之间的表面反应来进行的。在黑暗中,NaBr气溶胶产生的溴主要通过气态臭氧与表面溴离子之间的表面反应进行。但是,当用紫外线照射NaBr气溶胶时,溴的产生主要通过涉及气相化学,水相化学和传质的机理进行;接下来,MAGIC用于研究气溶胶大小如何影响NaCl和NaBr产生的卤素气溶胶。气溶胶的大小在三个数量级上变化,并分析了卤素输出的机理。结果表明,卤素的产生速率在很大程度上取决于可用于异相反应和传质的表面积。最后,结合实验和Mie理论计算,研究了气溶胶表面增强的光解作用。实验表明,在1-癸烯溶剂中,Mo(CO)6在气溶胶中的光解速度比在本体溶液中快许多个数量级。三重理论计算表明,由于依赖形态的共振增强了光解作用,不能解释实验结果。取而代之的是,观察结果可能是由于与大块相比,气溶胶的表面积增加了,并且表面上的溶剂笼效应降低了。米氏理论计算还用于预测大气相关条件下水滴中NO-3aq,FeOH2 + aq和H2O2(aq)的光解速率常数。

著录项

  • 作者

    Nissenson, Paul Morrow.;

  • 作者单位

    University of California, Irvine.;

  • 授予单位 University of California, Irvine.;
  • 学科 Environmental Sciences.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 233 p.
  • 总页数 233
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号