首页> 外文学位 >Photochemical processes in laser ablation of organic solids: Molecular dynamics study.
【24h】

Photochemical processes in laser ablation of organic solids: Molecular dynamics study.

机译:激光烧蚀有机固体中的光化学过程:分子动力学研究。

获取原文
获取原文并翻译 | 示例

摘要

In this thesis, a comprehensive study of the effect of the photochemical processes on laser ablation mechanisms has been conducted using molecular dynamics simulations.; We developed a new concept for modeling photochemical processes in laser ablation of organic films using a mesoscopic coarse-grain breathing sphere model for molecular dynamics simulations. The main advantage of our model is the ability to study the dynamics of the system at the mesoscopic length scale, a regime that is not accessible either with atomistic or continuum computational methods. The photodecomposition of the excited molecules and the chemical reaction patterns in our simulations are based on the photochemistry of chlorobenzene due to ease of its fragmentation and available experimental data. Interpretation of the experimental data is the main objective of our theoretical efforts.; Molecular dynamics simulations are used to investigate the effect of photochemical processes on molecular ejection mechanisms in 248-nm laser irradiation of organic solids. Photochemical reactions are found to release additional energy into the irradiated sample and decrease the average cohesive energy, therefore decreasing the value of the ablation threshold. The yield of emitted fragments becomes significant only above the ablation threshold. Below the ablation threshold, only the most volatile photoproduct, HCl, is ejected in very small amounts, whereas the remainder of photoproducts are trapped inside the sample. The presence of photochemical decomposition processes and subsequent chemical reactions changes the temporal and spatial energy deposition profile from pure photothermal ablation. The chemical reactions create an additional local pressure build up and, as a result, generate a strong and broad acoustic pressure wave propagating toward the bottom of the computational cell. The strong pressure wave in conjunction with the temperature increase in the absorbing region causes the ejection of hot massive molecular clusters. These massive clusters later disintegrate in the plume into the smaller clusters and monomers due to ongoing chemical reactions. The ejection and disintegration of big clusters result in the higher material removal rates and higher plume density. The results from our molecular dynamics simulations are in good agreement with experiment and provide microscopic perspective of photochemical processes in laser ablation to experimental investigations.; The ablation of material that is onset by pure photochemical processes has been investigated by molecular dynamics simulations. The simulations reveal that ablation by purely photochemical processes is accompanied by the ejection of relatively cold massive molecular clusters from the surface of the sample. The top of the plume exhibits high temperatures whereas the residual part of the sample is cold. The removal of the damaged material through big molecular cluster ejection is consistent with experimental observations of low heat damage of material. (Abstract shortened by UMI.)
机译:本文利用分子动力学模拟对光化学过程对激光烧蚀机理的影响进行了全面的研究。我们使用介观的粗粒呼吸球模型对分子动力学模拟开发了一种新概念,用于对有机膜激光烧蚀中的光化学过程进行建模。我们模型的主要优点是能够在介观长度尺度上研究系统动力学,而原子动力学或连续计算方法都无法访问这种体制。在我们的模拟中,受激分子的光分解和化学反应模式基于氯苯的光化学,这是由于其易碎裂和可获得的实验数据。实验数据的解释是我们理论工作的主要目标。分子动力学模拟用于研究光化学过程对248 nm有机固体激光辐照中的分子喷射机理的影响。发现光化学反应将额外的能量释放到被辐照的样品中,并降低了平均内聚能,因此降低了烧蚀阈值。仅在高于烧蚀阈值以上时,发射碎片的产量才变得显着。在烧蚀阈值以下,仅以极少量喷射出挥发性最高的光产物HCl,而其余光产物则被捕集在样品内部。光化学分解过程和随后的化学反应的存在改变了纯光热消融的时间和空间能量沉积轮廓。化学反应会产生额外的局部压力,从而产生向计算单元底部传播的强而宽的声压波。强大的压力波与吸收区域中的温度升高一起导致热的块状分子簇的喷射。由于持续的化学反应,这些巨大的团簇随后在羽流中分解成较小的团簇和单体。大团簇的排出和分解导致更高的材料去除率和更高的羽流密度。我们的分子动力学模拟结果与实验非常吻合,并为实验研究提供了激光烧蚀中光化学过程的微观视角。通过分子动力学模拟研究了纯光化学过程引发的材料烧蚀。模拟表明,通过纯光化学过程进行的烧蚀伴随着从样品表面喷射出相对较冷的块状分子簇。羽状物的顶部表现出高温,而样品的剩余部分是冷的。通过大分子团簇喷射去除受损材料与低热损伤材料的实验观察相一致。 (摘要由UMI缩短。)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号