...
首页> 外文期刊>Journal of Heat Transfer >Relativistic Molecular Dynamics Simulations Of Laser Ablation Process On The Xenon Solid
【24h】

Relativistic Molecular Dynamics Simulations Of Laser Ablation Process On The Xenon Solid

机译:氙固体激光烧蚀过程的相对论分子动力学模拟

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The phenomena of Coulomb explosion require the consideration of special relativity due to the involvement of high energy electrons or ions. It is known that laser ablation processes at high laser intensities may lead to the Coulomb explosion, and their released energy is in the regime of kEV to MeV. In contrast to conventional molecular dynamics (MD) simulations, we adopt the three-dimensional relativistic molecular dynamics (RMD) method to consider the effects of special relativity in the conventional MD simulation for charged particles in strong electromagnetic fields. Furthermore, we develop a Coulomb force scheme, combined with the Lennard-Jones potential, to calculate interactions between charged particles, and adopt a Verlet list scheme to compute the interactions between each particle. The energy transfer from the laser pulses to the solid surface is not directly simulated. Instead, we directly assign ion charges to the surface atoms that are illuminated by the laser. By introducing the Coulomb potential into the Lennard-Jones potential, we are able to mimic the laser energy being dumped into the xenon (Xe) solid, and track the motion of each Xe atom. In other words, the laser intensity is simulated by using the repulsive forces from the Coulomb potential. Both nonrelativistic and relativistic simulations are performed, and the RMD method provides more realistic-results, in particular, when high-intensity laser is used. In addition, it is found that the damage depth does not increase with repeated laser ablation when the pulse frequency is comparable to the duration of the pulse. Furthermore, we report the time evolution of energy propagation in space in the laser ablation process. The temporal-spatial distribution of energy indirectly indicates the temperature evolution on the surface of the Xe solid under intense laser illumination.
机译:由于高能电子或离子的参与,库仑爆炸现象需要考虑相对论。众所周知,高激光强度的激光烧蚀过程可能导致库仑爆炸,其释放能量处于kEV到MeV的范围内。与常规分子动力学(MD)模拟相反,我们采用三维相对论分子动力学(RMD)方法来考虑相对论在常规MD模拟中对强电磁场中带电粒子的特殊相对性的影响。此外,我们开发了一种库仑力方案,结合Lennard-Jones势,以计算带电粒子之间的相互作用,并采用Verlet列表方案来计算每个粒子之间的相互作用。没有直接模拟从激光脉冲到固体表面的能量转移。相反,我们直接将离子电荷分配给被激光照射的表面原子。通过将库仑电势引入Lennard-Jones电势,我们能够模拟倾倒到氙气(Xe)固体中的激光能量,并跟踪每个Xe原子的运动。换句话说,通过使用来自库仑势的排斥力来模拟激光强度。进行了非相对论和相对论仿真,并且RMD方法提供了更真实的结果,尤其是在使用高强度激光时。另外,发现当脉冲频率与脉冲的持续时间相当时,损伤深度不会随着重复的激光烧蚀而增加。此外,我们报告了激光烧蚀过程中能量在空间传播的时间演化。能量的时空分布间接表明在强激光照射下,Xe固体表面的温度变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号