首页> 外文学位 >THE UPPER LIMIT TO THE THEORETICAL EFFICIENCY OF P-N HOMOJUNCTION AND INTERFACIAL LAYER HETEROJUNCTION SOLAR CELLS.
【24h】

THE UPPER LIMIT TO THE THEORETICAL EFFICIENCY OF P-N HOMOJUNCTION AND INTERFACIAL LAYER HETEROJUNCTION SOLAR CELLS.

机译:P-N同质结和界面层异质结太阳能电池理论效率的上限。

获取原文
获取原文并翻译 | 示例

摘要

The physical mechanisms governing photovoltaic energy conversion in p-n homojunction and interfacial layer heterojunction (ILH) solar cells are examined. The usefulness of minority carrier mirrors (MCM) in such cells is studied by solving the minority carrier diffusion equation in the n- and p-type quasi-neutral regions of the cell, with boundary conditions representing MCM's at the ends of these regions. In this formalism, the MCM is considered to be an interfacial plane having zero surface recombination velocity. Non-zero values are also considered. It is shown that the MCM improves the open circuit voltage of the solar cell when it is located within a diffusion length of the junction between the n- and p-type regions. The effect of the MCM diminishes as the distance between it and the junction increases.;The analysis is also applied to cells made from silicon. A cell thickness of approximately 300 microns is necessary to absorb all the light owing to the indirect bandgap of silicon, yet the solar cell must be made thin in order to attain the maximum effect of the MCM's. A concept of internal light trapping is discussed; this trapping causes the light to undergo multiple reflections within the thin cell. By solving the minority carrier diffusion equation with appropriate generation function, it is shown that the upper limit to the efficiency is approximately 27%, for a cell of 15 microns in width.;The ILH solar cell is examined. A model describing current transport in the ILH cell is discussed and applied to the MIS solar cell. A new type of solar cell, the back surface MIS cell, is considered. The model is applied to this type of cell and the efficiency is calculated.;The ILH model is applied to the ITO-SiO(,2)-(p-type)Si SIS solar cell. The loss mechanisms in such cells are included in the model and the reduction in efficiency due to each mechanism is identified. The role of the SiO(,2)-Si interface states is examined.;The above analysis is applied to the direct gap materials CuInSe(,2) (E = 1.0eV) and GaAs (E = 1.43eV). It is shown that the theoretical upper limit to the conversion efficiency for devices employing MCM's on the front and back is approximately 26% for a CuInSe(,2) cell of width 2 microns.
机译:研究了控制p-n同质结和界面层异质结(ILH)太阳能电池中光伏能量转换的物理机制。通过求解电池的n型和p型准中性区域中的少数载流子扩散方程,以边界条件表示这些区域末端的MCM,来研究少数载流子反射镜(MCM)在此类电池中的有用性。在这种形式上,MCM被认为是具有零表面复合速度的界面。还应考虑非零值。示出了当MCM位于n型和p型区域之间的结的扩散长度内时,MCM改善了太阳能电池的开路电压。随着MCM与结之间的距离增加,其影响减弱。;该分析也适用于由硅制成的电池。由于硅的间接带隙,大约300微米的电池厚度对于吸收所有光是必需的,但是必须将太阳能电池做得很薄才能获得MCM的最大效果。讨论了内部光陷阱的概念。这种捕获使光在薄单元内经历多次反射。通过求解具有适当生成函数的少数载流子扩散方程,表明对于宽度为15微米的电池,效率上限约为27%。讨论了描述ILH电池中电流传输的模型,并将其应用于MIS太阳能电池。考虑一种新型的太阳能电池,即背面MIS电池。该模型应用于这种类型的电池并计算效率。ILH模型应用于ITO-SiO(,2)-(p型)Si SIS太阳能电池。这种单元中的损耗机制包括在模型中,并且可以识别由于每种机制导致的效率降低。考察了SiO(,2)-Si界面态的作用。上述分析适用于直接间隙材料CuInSe(,2)(E = 1.0eV)和GaAs(E = 1.43eV)。结果表明,对于宽度为2微米的CuInSe(,2)单元,在正面和背面采用MCM的器件的转换效率的理论上限约为26%。

著录项

  • 作者

    SPITZER, MARK BRADLEY.;

  • 作者单位

    Brown University.;

  • 授予单位 Brown University.;
  • 学科 Electromagnetics.
  • 学位 Ph.D.
  • 年度 1981
  • 页码 221 p.
  • 总页数 221
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号