首页> 外文学位 >Development of magnesium based hybrid nanocomposite
【24h】

Development of magnesium based hybrid nanocomposite

机译:镁基杂化纳米复合材料的开发

获取原文
获取原文并翻译 | 示例

摘要

This thesis focused on development of magnesium based composite with enhanced mechanical properties. Near dense monolithic magnesium, micron sized nickel particle reinforced magnesium composite and TiO2 nanoparticle reinforced magnesium nanocomposite were successfully developed using the cost effective powder metallurgy process of blend-press-sinter followed by hot extrusion. Hybrid nanocomposite consisting of 1.5 volume% nickel and 0.33volume% TiO2 was also developed using similar technique.;The developed monolithic and reinforced magnesium composites were characterized to determine the microstructural evolution, particle distribution and grain morphology using appropriate characterization techniques such as XRD, SEM and FE-SEM. The samples were also subjected to microhardness, macrohardness, tensile and compressive tests to determine the effect of the reinforcements on the mechanical properties of magnesium.;The nickel reinforcement particles dispersion was reasonably uniform with good matrix-reinforcement interfacial integrity. The small volume fraction of elemental nickel particle reinforcement refined grain morphology and significantly improved the hardness and tensile strength of the magnesium matrix without affecting the yield strength. However, ductility was adversely affected. The tensile strength was increased by ∼21% with a ∼26% decrease in the fracture strain, the reinforcement changed the tensile fracture mode of magnesium matrix from pseudo-ductile to brittle mode dominated by nickel particle fracture. The room temperature compression properties of the synthesized nanocomposites reveal an increase in the 0.2% compressive yield strength and ultimate compressive strength of pure magnesium up to ∼81% and ∼23% respectively with a ∼18% decrease in the fracture strain.;In the TiO2 reinforced magnesium nanocomposites, microstructural characterization of the nanocomposites reveal significant reduction in grain size of pure magnesium with addition of titanium oxide nanoparticles. The room temperature tensile properties of the synthesized nanocomposites revealed no significant improvement in the strength characteristics of magnesium with the addition of TiO2 nanoparticles, the tensile fracture strain of the synthesized nanocomposites was found to marginally surpass that of pure magnesium and a maximum fracture strain of ∼17% with the addition of 0.33 vol.% TiO2 was obtained. The room temperature compression properties of the synthesized nanocomposites reveal an increase in the 0.2% compressive yield strength and ultimate compressive strength of pure magnesium with no significant change in the fracture strain. With addition of 1.00 vol.% TiO2, the 0.2% compressive yield strength and the fracture strain of pure magnesium increased by ∼65%% and ∼37% respectively. With the addition of TiO2 nanoparticles, the level of anisotropy/asymmetry of pure magnesium measured using tensile compression asymmetry values was found to be lower than that of the synthesized pure magnesium and a minimum of ∼1 for Mg-1.00vol.% TiO2 nanocomposite was observed.;The microstructural characterization of the magnesium hybrid nanocomposite reveals significant grain refinement beyond that of individual nickel and TiO2 particle reinforcements. The simultaneous addition of 1.5vol.% nickel and 0.33vol% TiO2 significantly improved the hardness, tensile strength and fracture strain of the magnesium matrix but with adverse effect on its the yield strength. The room temperature compression properties of the hybrid nanocomposites reveal an increase in the 0.2% compressive yield strength and ultimate compressive strength of pure magnesium up to ∼112% and ∼29% respectively with a ∼12 % decrease in the fracture strain.
机译:本文的重点是开发具有增强的机械性能的镁基复合材料。利用混合压压烧结然后热挤压的高性价比粉末冶金工艺,成功开发了近致密的整体镁,微米级镍颗粒增强镁复合材料和TiO2纳米颗粒增强镁纳米复合材料。还使用相似的技术开发了由1.5体积%的镍和0.33体积%的TiO2组成的杂化纳米复合材料;通过适当的表征技术(如XRD,SEM),对已开发的整体和增强镁复合材料进行了表征,以确定其微观结构演变,颗粒分布和晶粒形态和FE-SEM。还对样品进行了显微硬度,宏观硬度,拉伸和压缩试验,以确定增强剂对镁的机械性能的影响。镍增强颗粒的分散合理,具有良好的基体-增强界面完整性。少量的元素镍颗粒增强物细化了晶粒形态,并显着提高了镁基体的硬度和拉伸强度,而没有影响屈服强度。但是,延展性受到不利影响。拉伸强度提高了约21%,断裂应变降低了约26%,增强材料将镁基体的拉伸断裂模式从准延性转变为以镍颗粒断裂为主的脆性模式。合成的纳米复合材料的室温压缩特性表明,纯镁的0.2%压缩屈服强度和极限压缩强度分别提高了约81%和约23%,断裂应变降低了约18%。 TiO2增强的镁纳米复合材料,纳米复合材料的微观结构表征显示,添加氧化钛纳米颗粒后,纯镁的晶粒尺寸显着减小。合成的纳米复合材料的室温拉伸性能表明,添加TiO2纳米颗粒对镁的强度特性没有显着改善,发现合成的纳米复合材料的拉伸断裂应变略高于纯镁,最大断裂应变为〜加入0.33体积%的TiO 2得到17%。合成的纳米复合材料的室温压缩特性表明,纯镁的0.2%压缩屈服强度和极限压缩强度有所提高,而断裂应变没有明显变化。加入1.00%(体积)的TiO2,0.2%的压缩屈服强度和纯镁的断裂应变分别增加了〜65 %%和〜37%。通过添加TiO2纳米颗粒,发现使用拉伸压缩不对称值测得的纯镁的各向异性/不对称性水平低于合成纯镁的各向异性/不对称性水平,Mg-1.00vol。%TiO2纳米复合材料的最小值/最小值为〜1。镁杂化纳米复合材料的微观结构表征显示出明显的晶粒细化,超过了单独的镍和TiO2颗粒增强材料。同时加入1.5%(体积)的镍和0.33%(体积)的TiO2可以显着改善镁基体的硬度,拉伸强度和断裂应变,但会对其屈服强度产生不利影响。杂化纳米复合材料的室温压缩特性表明,纯镁的0.2%压缩屈服强度和极限压缩强度分别提高了约112%和约29%,而断裂应变降低了约12%。

著录项

  • 作者单位

    King Fahd University of Petroleum and Minerals (Saudi Arabia).;

  • 授予单位 King Fahd University of Petroleum and Minerals (Saudi Arabia).;
  • 学科 Materials science.
  • 学位 M.S.
  • 年度 2016
  • 页码 138 p.
  • 总页数 138
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号