首页> 外文学位 >COMPUTING INTRINSIC IMAGES (ARTIFICIAL INTELLIGENCE).
【24h】

COMPUTING INTRINSIC IMAGES (ARTIFICIAL INTELLIGENCE).

机译:计算内在图像(人工智能)。

获取原文
获取原文并翻译 | 示例

摘要

Low-level modern computer vision is not domain dependent, but concentrates on problems that correspond to identifiable modules in the human visual system. Several theories have been proposed in the literature for the computation of shape from shading, shape from texture, retinal motion from spatiotemporal derivatives of the image intensity function, and the like.;The problems with the existing approach are basically the following: (1) The employed assumptions are very strong (they are not present in a large subset of real images), and so most of the algorithms fail when applied to real images. (2) Usually the constraints from the geometry and the physics of the problem are not enough to guarantee uniqueness of the computed parameters. In this case, strong additional assumptions about the world are used, in order to restrict the space of all solutions to a unique value. (3) Even if no assumptions at all are used and the physical constraints are enough to guarantee uniqueness of the computed parameters, then in most cases the resulting algorithms are not robust, in the sense that if there is a slight error in the input (i.e. small amount of noise in the image), this results in a catastrophic error in the output (computed parameters).;It turns out that if several available cues are combined, then the above-mentioned problems disappear; the resulting algorithms compute uniquely and robustly the intrinsic parameters (shape, depth, motion, etc.).;In this thesis the problem of machine vision is explored from its basics. A low level mathematical theory is presented for the unique and robust computation of intrinsic parameters. The computational aspect of the theory envisages a cooperative highly parallel implementation, bringing in information from five different sources (shading, texture, motion, contour and stereo), to resolve ambiguities and ensure uniqueness and stability of the intrinsic parameters. The problems of shape from texture, shape from shading and motion, visual motion analysis and shape and motion from contour are analyzed in detail.
机译:底层现代计算机视觉并不依赖于领域,而是集中在与人类视觉系统中可识别模块相对应的问题上。文献中已经提出了几种理论来从阴影中计算形状,从纹理中计算形状,从图像强度函数的时空导数中计算视网膜运动等。现有方法的问题基本上如下:(1)所采用的假设非常强(它们不存在于大量的真实图像中),因此大多数算法在应用于真实图像时都会失败。 (2)通常,问题的几何和物理约束不足以保证计算参数的唯一性。在这种情况下,将使用关于世界的强力附加假设,以将所有解决方案的空间限制为唯一值。 (3)即使根本不使用任何假设,并且物理约束条件足以保证所计算参数的唯一性,但在大多数情况下,如果输入中存在微小错误,则在大多数情况下,所得算法也不可靠(事实证明,如果将多个可用线索组合在一起,上述问题就消失了;即图像中的少量噪声),导致输出(计算参数)的灾难性错误。由此产生的算法可以唯一,可靠地计算出内在参数(形状,深度,运动等)。;本文从机器视觉的基础出发探讨了机器视觉的问题。提出了一种用于内在参数的独特而强大的计算的低级数学理论。该理论的计算方面设想了一种协作的高度并行实现,可以从五个不同的来源(阴影,纹理,运动,轮廓和立体)引入信息,以解决歧义并确保固有参数的唯一性和稳定性。详细分析了来自纹理的形状,来自阴影和运动的形状,视觉运动分析以及来自轮廓的形状和运动的问题。

著录项

  • 作者

    ALOIMONOS, JOHN.;

  • 作者单位

    University of Rochester.;

  • 授予单位 University of Rochester.;
  • 学科 Computer science.
  • 学位 Ph.D.
  • 年度 1987
  • 页码 261 p.
  • 总页数 261
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号