首页> 外文学位 >Modeling and analysis of timing behavior for CMOS circuits.
【24h】

Modeling and analysis of timing behavior for CMOS circuits.

机译:CMOS电路时序行为的建模和分析。

获取原文
获取原文并翻译 | 示例

摘要

Design closure in today's advanced chip construction requires a delicate balance among various conflicting constraints. These constraints include meeting the timing, power, and area specification of the end product. In this dissertation, we propose several techniques for modeling and analysis of timing behavior in order to achieve better timing performance in VLSI design.;A CMOS logic gate can have multiple transistor connection structures while maintaining the same logic function. Since those different transistor connection structures represent different electrical circuits, their timing behaviors, especially propagation delays, will also be different. Transistor reordering is a technique to optimize the timing performance of a CMOS gate by determining good transistor connection structures. Transistor reordering is effective in reducing delays of a circuit with nearly zero penalties. However, techniques to determine those good transistor orders have not been proposed in literature. Previous work on this has to resort to running SPICE simulations for various meaningful transistor orders and selecting a best one, which is extremely time-consuming. This dissertation proposes an efficient and accurate technique at switch level for determining best transistor orders without the need for running SPICE simulations.;Effective propagation delay estimation for gates is crucial in many stages of VLSI design. For small circuits with finalized design details and parameters, SPICE simulations can provide near exact delay information. For the delay estimations of circuits at early design stages or very large circuits, SPICE simulations are not practical; for those cases, instead, switch-level delay estimation should be used. To facilitate the development of a switch-level delay estimation tool, three components are essential, including delay model for logic gates, delay model for interconnections, and delay model for transmission gates. Delay models for interconnections have been extensively studied, but the research results for modeling the delay of logic gates and transmission gates are far from sufficient to be used in CAD tools. The lack of simple and effective gate delay models has led many researchers to applying unfit models to estimate gate delays. In this dissertation, by embedding concepts of electronic theories into switch-level piecewise analysis, a simple and efficient delay model for CMOS gates of general types (such as NAND, NOR, dynamic gates, complex gates, and transmission gates) is proposed.;The other contribution in this dissertation is the gate delay estimation with multiple-input switching (MIS) (where signal switching can occur at multiple inputs, each with a unique slope and arrival time). The timing information provided in standard cell libraries is usually for single-input switching (SIS). The switch level gate delay estimation with MIS has not been sufficiently addressed. In this dissertation, we propose an efficient and accurate technique for estimating MIS delay given SIS timing information (provide by all standard cell libraries). Unlike all previous work, the proposed MIS modeling technique does not require knowledge of process technology parameters, layout details (such as transistor sizes, wire sizes/areas, intrinsic capacitance, etc.), and the tedious steps of running a huge number of SPICE simulations to prepare the lookup tables. Thus, the proposed technique can fit into typical standard cell based design flow, where third-party libraries are used. In addition, the proposed MIS modeling technique is equally valid for working with gate delay models which provides SIS timing estimation. Numerous test cases over a wide range of process technologies (250, 130, and 50nm) have been experimented and compared with SPICE simulation results. (Abstract shortened by UMI.)
机译:当今先进芯片构造中的设计封闭要求在各种相互矛盾的约束条件之间实现微妙的平衡。这些限制包括满足最终产品的时序,功率和面积规格。本文提出了几种时序行为的建模和分析技术,以期在VLSI设计中获得更好的时序性能。CMOS逻辑门可以在保持相同逻辑功能的同时具有多个晶体管连接结构。由于那些不同的晶体管连接结构代表不同的电路,因此它们的时序行为,尤其是传播延迟也将不同。晶体管重新排序是一种通过确定良好的晶体管连接结构来优化CMOS栅极时序性能的技术。晶体管重新排序可有效减少惩罚几乎为零的电路延迟。然而,文献中尚未提出确定那些良好晶体管级的技术。以前的工作必须依靠SPICE仿真来处理各种有意义的晶体管订单,并选择最佳的晶体管订单,这非常耗时。本文提出了一种在开关级上有效,准确的技术,无需运行SPICE仿真即可确定最佳晶体管级数。在VLSI设计的许多阶段,有效的门传输延迟估计至关重要。对于具有最终设计细节和参数的小型电路,SPICE仿真可以提供接近准确的延迟信息。对于早期设计阶段的电路或非常大的电路的延迟估计,SPICE仿真不切实际。对于这些情况,应使用开关级延迟估计。为了促进开关级延迟估计工具的开发,三个组件必不可少,包括逻辑门的延迟模型,互连的延迟模型和传输门的延迟模型。对于互连的延迟模型已经进行了广泛的研究,但是对逻辑门和传输门的延迟进行建模的研究结果远远不足以在CAD工具中使用。缺乏简单有效的门延迟模型导致许多研究人员应用不合适的模型来估计门延迟。本文通过将电子理论的概念嵌入开关级分段分析中,提出了一种简单有效的通用类型CMOS门(如NAND,NOR,动态门,复数门和传输门)的延迟模型。本文的另一贡献是采用多输入开关(MIS)进行门控延迟估计(其中信号开关可以在多个输入处发生,每个输入都有唯一的斜率和到达时间)。标准单元库中提供的时序信息通常用于单输入切换(SIS)。 MIS的开关级门延迟估计尚未得到充分解决。在本文中,我们提出了一种有效且准确的技术,用于在给定SIS时序信息的情况下(由所有标准单元库提供)估算MIS延迟。与以前的所有工作不同,拟议的MIS建模技术不需要了解工艺技术参数,布局细节(例如晶体管尺寸,导线尺寸/面积,固有电容等),也不需要运行大量SPICE的繁琐步骤。模拟以准备查找表。因此,提出的技术可以适合使用第三方库的典型的基于标准单元的设计流程。此外,提出的MIS建模技术对于使用提供SIS时序估计的门延迟模型同样有效。实验了多种工艺技术(250、130和50nm)的大量测试案例,并将其与SPICE仿真结果进行了比较。 (摘要由UMI缩短。)

著录项

  • 作者

    Chiang, Ting-Wei.;

  • 作者单位

    Syracuse University.;

  • 授予单位 Syracuse University.;
  • 学科 Engineering Computer.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 194 p.
  • 总页数 194
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号