首页> 外文学位 >Structural and biochemical studies of Streptococcus sp. alpha-glycerophosphate oxidase.
【24h】

Structural and biochemical studies of Streptococcus sp. alpha-glycerophosphate oxidase.

机译:链球菌的结构和生化研究。 α-甘油磷酸氧化酶。

获取原文
获取原文并翻译 | 示例

摘要

The ability for bacteria to grow on glycerol has been linked to the genes responsible for encoding the glycerol facilitator (GlpF), glycerol kinase (GlpK), and either alpha-glycerophosphate oxidase (GlpO) or dehydrogenase (GlpD). GlpF aids in bringing glycerol into the cell, while GlpK phosphorylates it, trapping it within the cell as alpha-glycerophosphate (Glp). Glp is converted to dihydroxyacetone phosphate (DHAP) by GlpO in certain bacteria and by GlpD in others. Heme deficient lactic acid bacteria, such as Streptococcus sp. and Enterococcus casseliflavus, contain GlpO, whereas bacteria such as Bacillus subtilis and Escherichia coli contain GlpD. Both GlpO and GlpD utilize flavin adenine dinucleotide (FAD) as a cofactor, which is concomitantly reduced upon substrate oxidation. Though sequentially similar, GlpOs and GlpDs are functionally different based on the reoxidation of the cofactor; GlpO reacts with O2 to form H2O2, while GlpD transfers the reducing equivalents to ubiquinone. GlpO and GlpD also differ in that GlpDs are considered membrane associated, while most GlpOs are considered cytosolic. The GlpOs from heme deficient lactic acid bacteria also contain a ca. 50-residue insert that is not present in GlpDs. Limited proteolysis experiments with the Streptococcus sp. GlpO enzyme have suggested that this insert region may be a flexible surface loop region.;A 2.4 A resolution x-ray crystal structure of the streptococcal GlpO enzyme has been determined, along with a 2.3 A resolution x-ray crystal structure of a deletion mutant (GlpODelta) lacking the 50-residue insert region but retaining catalytic activity. A comparison of these two structures shows conformational changes involving an active-site histidine (H65) and the isoalloxazine ring of FAD. This has been interpreted as being representative of two forms of the resting oxidized enzyme, seen biochemically with the enterococcal GlpO enzyme.;Comparisons of GlpODelta with two structural homologs, D-amino acid oxidase (DAAO) and glycine oxidase (ThiO), showed the presence of a structurally conserved arginine residue, R346 in GlpODelta. Further analysis of the active site of G1pODelta resulted in the finding of other residues that are conserved among the GlpOs and GlpDs and are also within proposed Glp-binding regions, namely H65, R69, Y70, and K429; however, these residues are not present in DAAO or ThiO. This has led to the hypothesis that these residues form a phosphate binding pocket. An active-site base is required for the abstraction of a proton from the C(2)-OH of Glp and drives the hydride transfer of C(2)-H to FAD N(5). Histidines are common residues that play this role in oxidoreductases. A hypothesis was developed that H65 may play that role.;Mutagenic analyses show that R346 and K429 are essential for GlpO activity. Both residues when mutated yielded an inactive enzyme based on the horseradish peroxidase (HRP) assay and enzyme-monitored turnover (EMT) experiments. Sulfite titration data for both mutants revealed that they both stabilized an FAD N(5)-sulfite adduct, though at a higher Kd when compared to wild-type GlpODelta. Analyzing the relationship of Kd values for sulfite and redox potential, the increase in sulfite Kd seems to rule out the mutations affecting the redox potentials of the FAD cofactor for either of these mutants. Based on the HRP assay data, H65A is ∼2% as active as wild type GlpODelta, whereas the H65Q mutant is ∼63% as active. This result contradicts the hypothesis that H65 is an active site base. This result, however, does support the idea that this residue is important for activity but for substrate binding, possibly interacting with the Glp-phosphate moiety. The activity for the R69M is ∼13% that of wild type, implicating it as an important residue in catalysis, also possibly interacting with the Glp-phosphate upon substrate binding. The Y70F mutant yields an activity of ∼77% of wild type, indicating that it may be important for enzyme catalysis but not essential. The structural and biochemical experiments described in this dissertation have led to the formulation of a reaction scheme for binding and catalysis of GlpO.
机译:细菌在甘油上生长的能力已与负责编码甘油促进剂(GlpF),甘油激酶(GlpK)和α-甘油磷酸磷酸盐氧化酶(GlpO)或脱氢酶(GlpD)的基因相关联。 GlpF有助于将甘油带入细胞,而GlpK则将甘油磷酸化,将其作为α-甘油磷酸(Glp)捕获在细胞内。 Glp在某些细菌中被GlpO转化为磷酸二羟基丙酮磷酸酯(DHAP),在其他细菌中被GlpD转化为磷酸二羟基丙酮磷酸酯(DHAP)。血红素缺乏的乳酸菌,例如链球菌。 Casseliflavus和肠球菌含有GlpO,而枯草芽孢杆菌和大肠杆菌等细菌则含有GlpD。 GlpO和GlpD均利用黄素腺嘌呤二核苷酸(FAD)作为辅因子,其在底物氧化时随之减少。尽管顺序相似,但GlpO和GlpD在功能上基于辅因子的再氧化而有所不同。 GlpO与O2反应形成H2O2,而GlpD将还原当量转移至泛醌。 GlpO和GlpD的区别还在于,GlpD被认为是膜相关的,而大多数GlpO被认为是胞质的。来自血红素缺陷型乳酸菌的GlpO还含有一个ca。 GlpD中不存在的50个残基插入物。有限的蛋白水解实验与链球菌。 GlpO酶表明该插入区域可能是一个灵活的表面环区域。;已确定了链球菌GlpO酶的2.4 A分辨率X射线晶体结构,以及缺失突变体的2.3 A分辨率X射线晶体结构。 (GlpODelta)缺少50个残基的插入区域,但保留了催化活性。这两个结构的比较显示,构象变化涉及活性位点组氨酸(H65)和FAD的异别恶嗪环。这已被解释为代表两种形式的静息氧化酶,从肠球菌GlpO酶的生化观察; GlpODelta与两种结构同源物D-氨基酸氧化酶(DAAO)和甘氨酸氧化酶(ThiO)的比较显示在GlpODelta中存在结构保守的精氨酸残基R346。对G1pODelta活性位点的进一步分析导致发现了其他残基,这些残基在GlpO和GlpD之间是保守的,并且也在提议的Glp结合区域内,即H65,R69,Y70和K429;但是,这些残基不存在于DAAO或ThiO中。这导致了这样的假设,即这些残基形成了磷酸盐结合袋。从Glp的C(2)-OH提取质子需要一个活性部位的碱,并驱动C(2)-H的氢化物转移到FAD N(5)。组氨酸是在氧化还原酶中起作用的常见残基。提出了一个假设,即H65可能发挥了这种作用。诱变分析表明,R346和K429对GlpO活性至关重要。根据辣根过氧化物酶(HRP)分析和酶监控的周转率(EMT)实验,两个残基突变后均会产生失活的酶。两个突变体的亚硫酸盐滴定数据显示,它们都稳定了FAD N(5)-亚硫酸盐加合物,尽管与野生型GlpODelta相比,其Kd较高。通过分析亚硫酸盐和氧化还原电位的Kd值之间的关系,亚硫酸盐Kd的增加似乎排除了影响这些突变体之一的FAD辅助因子氧化还原电位的突变。根据HRP分析数据,H65A的活性约为野生型GlpODelta的2%,而H65Q突变体的活性约为野生型的GlpODelta的63%。该结果与H65是活性位点碱基的假设相矛盾。然而,该结果确实支持以下想法:该残基对于活性但对于底物结合是重要的,可能与Glp-磷酸部分相互作用。 R69M的活性是野生型的约13%,暗示它是催化中的重要残基,也可能在底物结合后与Glp-磷酸盐相互作用。 Y70F突变体的活性约为野生型的77%,表明它对酶催化可能很重要,但不是必需的。本文描述的结构和生化实验已导致制定了结合和催化GlpO的反应方案。

著录项

  • 作者

    Colussi, Timothy M.;

  • 作者单位

    Wake Forest University.;

  • 授予单位 Wake Forest University.;
  • 学科 Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 128 p.
  • 总页数 128
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号