首页> 外文学位 >Prediction of silicon nanoparticle formation: Thermochemistry and kinetics generalized from quantum chemistry.
【24h】

Prediction of silicon nanoparticle formation: Thermochemistry and kinetics generalized from quantum chemistry.

机译:预测硅纳米颗粒的形成:从量子化学中概括出的热化学和动力学。

获取原文
获取原文并翻译 | 示例

摘要

Pyrolysis of the feed gas, typically SiH4 or Si2H 6, is a standard protocol to create polycrystalline or amorphous silicon nanoparticles in the gas phase or controlled growth of silicon wafers at a gas-solid interface to form semiconductor-grade materials through chemical vapor deposition (CVD) methods. Polymerization of silicon hydrides in the gas phase causes deposits on a growing semiconductor surface forming point defects. A detailed understanding of the microkinetics for the gas-phase formation of hydrogenated silicon nanoparticles will allow for the improvement of applications in which silicon nanoparticles are desired or side products such as biological imaging and CVD, respectively. While a limited number of computational studies of hydrogenated silicon nanoparticle formation have been carried out to address these concerns at the elementary step level, augmentation of these models to address multifunctionality, more accurate treatment of kinetics, and the complex, polycyclic nature of silicon hydrides is warranted.Using quantum chemical calculations, statistical thermodynamics, conventional and variational transition state theory, and internal rotation corrections, accurate rate coefficients were calculated for over 130 reactions involving 1,2-hydrogen shift, substituted silylene addition/elimination, cyclization/ring opening, H2 addition/elimination, and multifunctional silicon hydride addition/elimination. These reaction classes have been observed experimentally, yet rate coefficients cannot be measured directly for all possible reactions of silicon hydrides of relevant sizes and substituents. Thus, hydrides containing up to 10 silicon atoms, a variety of acyclic and cyclic substituents about the reactive center, and polycyclic nature were explored. Benson's group additivity model was extended to transition states to predict Arrhenius parameters, i.e., the pre-exponential factor and activation energy, for the major monofunctional reaction classes during silicon hydride pyrolysis. The Evans-Polanyi correlation was revised for multifunctional kinetics, and representative pre-exponential factors were calculated. Additionally, thermochemical properties for 175 hydrogenated clusters containing up to 13 silicon atoms were calculated to analyze the polycyclic and multifunctional nature of complex species. Primarily, this research serves to further the understanding of hydrogenated silicon nanoparticle formation chemistry at the molecular level. However, the kinetic correlations governing hydrogenated silicon nanoparticle formation also have practical value to engineers designing new reactors for semiconductors or tailored nanoparticles.
机译:进料气(通常为SiH4或Si2H 6)的热解是一种标准方案,可在气相中形成多晶或非晶硅纳米颗粒,或者在气固界面处控制硅片的生长,从而通过化学气相沉积形成半导体级材料( CVD)方法。气相中氢化硅的聚合导致沉积在生长的半导体表面上,形成点缺陷。对用于气相形成氢化硅纳米颗粒的微动力学的详细理解将允许改进其中期望硅纳米颗粒或副产物(例如分别为生物成像和CVD)的应用。尽管已经进行了有限数量的氢化硅纳米颗粒形成的计算研究来解决基本步骤上的这些问题,但是增加这些模型以解决多功能性,更准确的动力学处理以及氢化硅的复杂多环性质是使用量子化学计算,统计热力学,常规和变分过渡态理论以及内部旋转校正,可以计算出130多个反应的准确速率系数,这些反应涉及1,2-氢转移,取代的亚甲硅烷基的添加/消除,环化/开环,氢气的添加/消除和多功能氢化硅的添加/消除。已经通过实验观察到了这些反应类别,但是不能直接测量相关大小和取代基的氢化硅的所有可能反应的速率系数。因此,研究了含最多10个硅原子的氢化物,反应中心附近的各种无环和环状取代基以及多环性质。 Benson的群可加性模型扩展到过渡态,以预测氢化硅热解过程中主要的单官能反应类的Arrhenius参数,即前指数因子和活化能。修订了Evans-Polanyi相关性以实现多功能动力学,并计算了代表性的指数前因子。此外,计算了包含多达13个硅原子的175个氢化簇的热化学性质,以分析复杂物种的多环和多功能性质。首先,这项研究有助于在分子水平上进一步了解氢化硅纳米粒子的形成化学。然而,控制氢化硅纳米颗粒形成的动力学相关性对于工程师设计用于半导体或定制纳米颗粒的新反应器也具有实用价值。

著录项

  • 作者

    Adamczyk, Andrew Joseph.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Chemistry Inorganic.Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 275 p.
  • 总页数 275
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号