首页> 外文学位 >Simulation of blood flow using kinetic theory based multiphase model.
【24h】

Simulation of blood flow using kinetic theory based multiphase model.

机译:使用基于动力学理论的多相模型模拟血流。

获取原文
获取原文并翻译 | 示例

摘要

Blood is a mixture of red blood cells (RBCs) or erythrocytes, platelets or thrombocytes, and white blood cells (WBCs) or leukocytes suspended in plasma. Until very recently, however, blood flow was modeled as a single phase fluid. The objective of this thesis research is the hemodynamic study of blood flow using kinetic theory based multiphase computational fluid dynamics (CFD).;Two-phase kinetic theory CFD models were used to simulate the blood flow of plasma and RBCs in both a straight capillary tube and a realistic model of a right coronary artery (RCA). This model explains the Fahraeus-Linqvist effect: the migration of red blood cells from the wall toward the center due to shear induced diffusion, and the blood viscosity dependence on vessel diameter and hematocrit. The computed hematocrit distribution using a complete two phase CFD model and a fully developed flow approximation solution in the narrow tube agrees with experimental measurements. The momentum and granular temperature boundary layers are predicted. A pulsatile inlet velocity is used to model the realistic model of an RCA. The red blood cell volume fractions, shear stresses, shear stress gradients, granular temperatures, viscosities, and phase velocities varied with time and position during each cardiac cycle. The wall shear stress and wall shear stress gradients (both spatial and temporal) were found to be highest on the inside area of maximum curvature. Potential atherosclerosis sites are identified using these computational results.;Simplified equations describing for multiphase kinetic theory model are used to simulate the blood flow of platelets, red blood cells, and plasma. A fully developed parabolic velocity distribution is assumed. The near wall buildup of platelets and its dependence on the hematocrit and wall shear rate in the vessel are explained as their interactions with dense red blood cells.;The simplified equations of multiphase kinetic theory model are modified by including the electrostatic effect caused by the negative surface charged lipoprotein nano-particles. The structure of the charge distribution in the computation domain is modeled with the electric potential obtained from the Poisson equation. The migration of lipoproteins away from the center of vessel is shown to be a result of electric forces. The appearance of high density lipoprotein (HDL) produces higher electric potential and transports low density lipoproteins away from the center. There is a higher ratio of HDL to low density lipoprotein (LDL) near the wall. The implication is that when the ratio of HDL to LDL concentrations is optimum in the human body this may inhibit the formation of atherosclerosis by increasing the biochemical reaction of HDL on the artery wall to decrease the oxidization of LDL.
机译:血液是悬浮在血浆中的红细胞(RBC)或红细胞,血小板或血小板和白细胞(WBC)或白细胞的混合物。但是直到最近,血流才被建模为单相流体。本研究的目的是利用基于动力学理论的多相计算流体动力学(CFD)对血流进行血流动力学研究。;采用两相动力学理论CFD模型来模拟直毛细管中血浆和RBC的血流和右冠状动脉(RCA)的现实模型。该模型解释了Fahraeus-Linqvist效应:由于剪切诱导的扩散,红细胞从壁向中心的迁移,以及血液粘度取决于血管直径和血细胞比容。使用完整的两阶段CFD模型和在窄管中充分发展的流量近似解计算的血细胞比容分布与实验测量结果一致。预测了动量和颗粒温度边界层。脉动入口速度用于对RCA的真实模型进行建模。在每个心动周期中,红细胞体积分数,切应力,切应力梯度,颗粒温度,粘度和相速度随时间和位置而变化。发现在最大曲率的内部区域,壁切应力和壁切应力梯度(在空间和时间上)最高。使用这些计算结果来识别潜在的动脉粥样硬化部位。;使用描述多相动力学理论模型的简化方程式来模拟血小板,红细胞和血浆的血流。假设抛物线速度分布完全发达。解释了血小板近壁的形成及其对血细胞比容和血管壁剪切速率的依赖性,这是由于它们与致密的红细胞的相互作用所引起的。多相动力学理论模型的简化方程被修正,包括负离子引起的静电效应。表面带电的脂蛋白纳米颗粒。用从泊松方程获得的电势对计算域中电荷分布的结构进行建模。脂蛋白从血管中心的迁移表明是电力的结果。高密度脂蛋白(HDL)的出现产生了更高的电势,并且将低密度脂蛋白转运到远离中心的位置。壁附近的HDL与低密度脂蛋白(LDL)的比率较高。暗示是当HDL与LDL的浓度之比在人体中最佳时,这可通过增加HDL在动脉壁上的生化反应以减少LDL的氧化来抑制动脉粥样硬化的形成。

著录项

  • 作者

    Huang, Jing.;

  • 作者单位

    Illinois Institute of Technology.;

  • 授予单位 Illinois Institute of Technology.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 197 p.
  • 总页数 197
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号