首页> 外文会议>International Conference on Emerging Technologies >Numerical Analysis of Multiphase Blood Flow within Carotid Artery bifurcation using Mixture Model Theory
【24h】

Numerical Analysis of Multiphase Blood Flow within Carotid Artery bifurcation using Mixture Model Theory

机译:混合模型理论对颈动脉和分支内多相血流的数值分析

获取原文

摘要

CFD analysis of blood flow within the carotid artery has been carried out due to the rise of strokes and carotid artery diseases. The carotid artery is bifurcated into internal and external ones. Most of the earlier work has been done considering blood as a single phase. However, in this work, blood is treated as multiphase (plasma and morphotic particles). Finite difference method has been used to perform the numerical analysis, using a second-order time discretization scheme. Mixture model theory of Euler-Euler approach is preferred over the Eulerian model. Human blood shows Newtonian and non-Newtonian characteristics. During the cardiac cycle, it behaves non-Newtonian with a shear rate ranging from 0.1 to100 s-1, while Newtonian; exhibiting a shear rate more than 100 s-1. For the present analysis, it is mathematically modelled as an incompressible, time-dependent Newtonian fluid with average values of density and viscosity for each phase. A real geometry of the carotid artery was created using Computed Tomography Angiography image of a carotid artery and its bifurcation. Navier-Stokes equation has been solved computationally, with multiphase boundary conditions in ANSYS 19. CFD is a potent tool in analyzing blood flow within the treated artery. Especially after Carotid End-Arterectomy (CEA) and Carotid Angioplasty with Stenting (CAS) has been carried out. Moreover, an optimized stent design can be carried out using this work after analyzing the flow characteristics and in coordination with CT angiography results. Stent flow regimes and stent meshing can be studied to design a particular stent for a particular case.
机译:由于中风和颈动脉疾病的增多,已经对颈动脉内的血流进行了CFD分析。颈动脉分为内动脉和外动脉。大多数早期工作已经完成,将血液视为一个单一阶段。但是,在这项工作中,血液被视为多相(血浆和形态颗粒)。有限差分法已被用于使用二阶时间离散化方案进行数值分析。与欧拉模型相比,欧拉-欧拉方法的混合模型理论更为可取。人血显示出牛顿和非牛顿的特征。在心动周期中,其表现为非牛顿性,剪切速率范围为0.1到100 s -1 ,而牛顿;表现出超过100 s的剪切速率 -1 。对于本分析,在数学上将其建模为不可压缩的时间相关牛顿流体,每个相的密度和粘度平均值。使用颈动脉及其分支的计算机断层扫描血管造影图像创建了颈动脉的真实几何形状。 Navier-Stokes方程已通过ANSYS 19中的多相边界条件进行了计算求解,CFD是分析受治疗动脉内血流的有效工具。特别是在进行了颈动脉末端动脉切除术(CEA)和带支架的颈动脉血管成形术(CAS)之后。此外,在分析流动特性并与CT血管造影结果配合使用后,可以使用这项工作进行优化的支架设计。可以研究支架的流动方式和支架的啮合,以设计用于特定情况的特定支架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号