首页> 外文学位 >Trust region algorithms for optimization with nonlinear equality and inequality constraints.
【24h】

Trust region algorithms for optimization with nonlinear equality and inequality constraints.

机译:具有非线性等式和不等式约束的优化的信赖域算法。

获取原文
获取原文并翻译 | 示例

摘要

We consider the general nonlinear optimization problem defined as, minimize a nonlinear real-valued function of several variables, subject to a set of nonlinear equality and inequality constraints. This class of problems arise in many real life applications, for example in engineering design, chemical equilibrium, simulation and data fitting. In this research, we present algorithms that use the trust region technique to solve these problems. First, we develop an algorithm for solving the nonlinear equality constrained optimization, then we generalize the algorithm to handle the inclusion of nonlinear inequality constraints in the problem. The algorithms use the successive quadratic programming (SQP) approach and trust region technique. We define a model subproblem which minimizes a quadratic approximation of the Lagrangian subject to modified relaxed linearizations of the problem nonlinear constraints and a trust region constraint. Inequality constraints are handled by a compromise between an active set strategy and IQP subproblem solution technique. An analysis which describes the local convergence properties of our algorithms is presented. The algorithms are implemented and the model minimization is done approximately by using the dogleg approach. Numerical results are presented and compared with the results of a popular line search method. Some examples are presented in which the ability of our method to use directions of negative curvature results in greater reliability. Results of the numerical experiments indicate that our method is very robust and reasonably efficient.
机译:我们认为一般的非线性优化问题定义为:在受到一组非线性等式和不等式约束的情况下,最小化几个变量的非线性实值函数。这类问题出现在许多现实生活中的应用中,例如工程设计,化学平衡,模拟和数据拟合。在这项研究中,我们提出了使用信任域技术来解决这些问题的算法。首先,我们开发了一种求解非线性等式约束优化的算法,然后推广了该算法以处理问题中包含的非线性不等式约束。该算法使用连续二次规划(SQP)方法和信任区域技术。我们定义了一个模型子问题,该子问题将拉格朗日主题的二次逼近最小化,使问题非线性约束和信任区域约束的修正松弛线性化。不等式约束是通过主动集策略和IQP子问题解决方案技术之间的折衷解决的。提出了描述我们算法的局部收敛性的分析。通过使用狗腿法,算法得以实现,并且模型最小化得以完成。给出数值结果并将其与流行的线搜索方法的结果进行比较。给出了一些示例,其中我们的方法使用负曲率方向的能力导致更高的可靠性。数值实验结果表明,我们的方法非常鲁棒并且合理有效。

著录项

  • 作者

    Omojokun, Emmanuel Omotayo.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Computer Science.
  • 学位 Ph.D.
  • 年度 1989
  • 页码 120 p.
  • 总页数 120
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 自动化技术、计算机技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号