首页> 外文学位 >Intelligent acoustic emission sensing in machining for tool condition monitoring.
【24h】

Intelligent acoustic emission sensing in machining for tool condition monitoring.

机译:机加工中的智能声发射感应,用于刀具状态监测。

获取原文
获取原文并翻译 | 示例

摘要

As the trend of machining toward automation proceeds, the real time identification of the states of the cutting process and cutting tool on the machine becomes increasingly important. The success of such an automated machining system implies production must be implemented with smart sensor systems to make it perform better. This dissertation describes the development of an intelligent acoustic emission based sensing system for tool condition monitoring in untended machining operations.;The acoustic emission generated from the sliding contact of metal-metal pairs using pin-on-disk tests is first investigated. The influence of process variables such as loading condition, sliding speed and distances, on the AE generated from sliding contact is studied. The sensitivity and effectiveness of the AE technique in detecting the changes of interaction characteristics in sliding contact is demonstrated. The possibility of in-process detection of these two phenomena by using the AE technique is discussed.;A method for recognizing tool wear states in a turning operation from the integrated information of cutting force and acoustic emission signals is presented. The approach, which employs gradient adaptive lattice analysis and pattern recognition techniques, is fast and yields accurate recognition of tool wear states in a wide range of cutting conditions. The results showed that this approach detected a fresh or worn tool state with a high percentage of correct classification (over 90%).;It was shown that the normalized residual variance (NRV), a dimensionless feature extracted from the lattice filter scheme, proved to be a valuable index for tool wear monitoring in single-tooth as well as multi-tooth milling under a wide range of cutting conditions. The feasibility of using acoustic emission for individual abnormal insert detection in addition to overall performance evaluation in the multi-tooth milling operation was also investigated. Furthermore, a frequency domain feature based on the periodicity characteristics of the acoustic emission signal generated from multi-tooth milling operations was also investigated and proved to be effective for tool wear monitoring and chipped tool detection.;Finally, the decision tree method and the group method of data handling (GMDH), due to their self-organizing capability for sensor integration, diagnostic reasoning and decision making, were adopted for the recognition and prediction of the tool wear state in a turning operation using acoustic emission and cutting force signals. Their performance for tool wear detection was discussed.
机译:随着加工朝着自动化的趋势发展,实时识别机床上切削过程和切削刀具的状态变得越来越重要。这种自动加工系统的成功意味着必须使用智能传感器系统来实现生产,以使其性能更好。本文介绍了一种基于智能声发射的传感系统的开发,该系统可用于无人加工过程中的刀具状态监控。;首先研究了通过销钉盘测试从金属-金属对的滑动接触产生的声发射。研究了负载条件,滑动速度和距离等过程变量对滑动接触产生的声发射的影响。证明了AE技术在检测滑动接触中相互作用特性变化方面的敏感性和有效性。讨论了利用AE技术对这两种现象进行过程检测的可能性。提出了一种从切削力和声发射信号的综合信息中识别车削过程中刀具磨损状态的方法。该方法采用了梯度自适应晶格分析和模式识别技术,速度很快,可以在广泛的切削条件下准确识别刀具的磨损状态。结果表明,该方法检测到的工具状态为新鲜或磨损状态,正确分类的百分比较高(超过90%).;表明,从网格过滤方案中提取的无量纲特征归一化残差(NRV)证明了是在各种切削条件下单齿铣削和多齿铣削中刀具磨损监测的重要指标。除了在多齿铣削操作中进行整体性能评估外,还研究了使用声发射进行单个异常刀片检测的可行性。此外,还研究了基于多齿铣削操作产生的声发射信号的周期性特征的频域特征,并被证明对刀具磨损监测和刀具探伤是有效的。最后,决策树方法和组数据处理方法(GMDH)由于具有自组织的传感器集成,诊断推理和决策能力,因此在使用声发射和切削力信号的车削操作中,可以识别和预测刀具磨损状态。讨论了它们在刀具磨损检测中的性能。

著录项

  • 作者

    Jiaa, Chi-Liang.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Mechanical.;Artificial Intelligence.
  • 学位 Ph.D.
  • 年度 1989
  • 页码 187 p.
  • 总页数 187
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号