首页> 外文学位 >Selection and characterization of RNA aptamers that detect a quaternary structure for ribosomal protein S7.
【24h】

Selection and characterization of RNA aptamers that detect a quaternary structure for ribosomal protein S7.

机译:RNA适体的选择和表征,可检测核糖体蛋白S7的四级结构。

获取原文
获取原文并翻译 | 示例

摘要

Here we report on the selection and characterization of RNA aptamers that recognize E. coli ribosomal protein S7. Ribosomal protein S7 plays two important roles in ribosome biogenesis: (1) as an assembly initiator, S7 nucleates the folding of the 3' major domain of 16S rRNA, and (2) it binds to the str operon and represses the translation of S12, S7, and EF-G. The primary and secondary structures of the S7 binding sites of rRNA and mRNA share limited sequence and structural homology and the required elements for high affinity binding have not been entirely elucidated. We have selected RNA aptamers that share very little primary sequence homology to either the S7 binding site of 16S rRNA or to the intercistronic region of str mRNA. Many of the aptamers are expected to fold into three-helix junctions, a structure particularly reminiscent of the mRNA. Interestingly, the aptamers exhibit cooperative binding with Hill coefficients of ∼3 indicating that they are detecting a quaternary structure of S7.;We have found that the S7 aptamers use the same amino acids and structural elements to bind S7 as the rRNA and mRNA indicating that the same binding site is used for all three RNAs. With gel filtration, we were only able to isolate the aptamer/S7 complex at a 1:1 stoichiometry, indicating that the proposed quaternary structure of S7 is weak. However, deletion of the beta-ribbon nearly eliminates cooperative aptamer binding suggesting that this structural element may be involved in protein-protein interaction. Furthermore, pre-treatment of native S7 with the N-terminal extension also results in a significant reduction in cooperative aptamer binding.;The results presented here suggest that S7 itself may undergo conformational rearrangement subsequent to 16S rRNA binding, and may help explain the strong temperature-dependent rearrangements at the binding site of S7 within the 16S rRNA. Furthermore, we propose that the weak, multimeric interaction of S7 may have a role in the retroregulation of S12. S7 may bind to the mRNA in a pre-multimerized form or multimerize subsequent to binding, resulting in ribosome stalling due to the multimeric obstacle. If the S7/S7 interaction is weak however, then it may be easily disrupted by repeated ribosome bombardment, causing eventual decay of the multimer and relieving some of the translational repression. Translational repression of the genes encoding S7 and EF-G would remain constant over time however, because the monomeric S7 bound more tightly to the intercistronic region would continue to prevent translational coupling with the upstream gene encoding S12.
机译:在这里我们报道识别大肠杆菌核糖体蛋白S7的RNA适体的选择和表征。核糖体蛋白S7在核糖体生物发生中起两个重要作用:(1)作为装配起始物,S7使16S rRNA 3'主结构域的折叠成核,(2)它与str操纵子结合并抑制S12的翻译, S7和EF-G。 rRNA和mRNA的S7结合位点的一级和二级结构共享有限的序列和结构同源性,高亲和力结合所需的元件尚未完全阐明。我们选择了与16S rRNA的S7结合位点或str mRNA的顺反子区共享非常少的一级序列同源性的RNA适体。预期许多适体会折叠成三螺旋连接,这种结构特别让人联想到mRNA。有趣的是,适体显示出与〜3的Hill系数协同结合,表明它们正在检测S7的四级结构。;我们发现S7适体使用与r7和rRNA和mRNA相同的氨基酸和结构元件结合S7,表明所有三个RNA使用相同的结合位点。通过凝胶过滤,我们只能以1:1的化学计量比分离适体/ S7复合物,表明S7的四级结构很弱。然而,β-碳带的缺失几乎消除了协同的适体结合,表明该结构元件可能参与蛋白质-蛋白质相互作用。此外,使用N端延伸对天然S7进行预处理还可以显着降低协同适体结合。;此处显示的结果表明,S7本身可能在16S rRNA结合后发生构象重排,并可能有助于解释16S rRNA内S7结合位点的温度依赖性重排。此外,我们建议S7的弱,多聚体相互作用可能在S12的逆调节中起作用。 S7可能以预多聚形式与mRNA结合,或在结合后发生多聚,导致核糖体由于多聚体障碍而失速。但是,如果S7 / S7相互作用较弱,则可能容易受到重复的核糖体轰击的干扰,从而导致多聚体最终降解并减轻部分翻译抑制。但是,随着时间的推移,编码S7和EF-G的基因的翻译抑制将保持恒定,因为单体S7与顺反子间区域的结合更紧密,将继续阻止与编码S12的上游基因的翻译偶联。

著录项

  • 作者

    Pappas, Allison L.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Biology Molecular.;Chemistry Biochemistry.;Biology Microbiology.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 135 p.
  • 总页数 135
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号