首页> 外文学位 >In vitro simulation of in vivo dynamic micromechanical failure of structural composite biomaterials.
【24h】

In vitro simulation of in vivo dynamic micromechanical failure of structural composite biomaterials.

机译:结构复合生物材料体内动态微机械破坏的体外模拟。

获取原文
获取原文并翻译 | 示例

摘要

Concern exists whether fiber reinforced plastics can be developed with sufficient fatigue strength for long term use in structural orthopaedic application. The fiber/matrix interfacial bond is an important governing factor in the fracture behavior of composite materials. The goal of this research was to characterize the fatigue behavior of the fiber/matrix interfacial bond in candidate FRP composite biomaterial systems in simulated in vivo environments.; A miniature mechanical test machine was developed (and patented) to characterize the fracture behavior of the fiber/matrix interfacial bond. The fiber/matrix combinations selected for study were carbon fiber/polysulfone (CF/PSF), carbon fiber/polycarbonate (CF/PC), Kevlar 49 fiber/polysulfone (K49/PSF), and Kevlar 49 fiber/polycarbonate (K49/PC). The interface was characterized in terms of both ultimate and dynamic fatigue strength in three separate environments (37{dollar}spcirc{dollar}C dry air, saline, and inflammatory exudate) utilizing a single fiber pull-out test method.; Test results show the CF interfaces to possess greater ultimate bond strength (UBS) and fatigue strength (FS) than the K49 interfaces with each matrix type. The PC and PSF matrix interfacial bond strengths were found to be approximately equivalent for a given fiber type. The UBS and FS were found to be significantly decreased by both saline and exudate exposure with no significant difference being found in the saline and exudate environments. The fatigue results show a linear relationship between applied shear stress and the logarithm of fatigue life (cycles to failure) for each FRP system. SEM photographs of the site of debonding reveal that bond failure occurred primarily by adhesive failure at the interface in the UBS test while fatigue debonding occurred by a mixture of both adhesive and matrix cohesive failure.; Methods have been successfully developed for the dynamic fatigue characterization of the fiber/matrix interfacial bond utilizing a single fiber pull-out test. Interfacial bond ultimate and fatigue strength characterization in simulated in vivo environments should prove useful for the development of fatigue resistant FRP composite biomaterials for long term structural orthopaedic implant use.
机译:人们担心是否可以开发出具有足够疲劳强度的纤维增强塑料,以在结构整形外科应用中长期使用。纤维/基质界面键是复合材料断裂行为的重要控制因素。这项研究的目的是在模拟的体内环境中表征候选FRP复合生物材料系统中纤维/基质界面键的疲劳行为。开发了一种微型机械测试机(并申请了专利)来表征纤维/基质界面粘结的断裂行为。选择用于研究的纤维/基体组合是碳纤维/聚砜(CF / PSF),碳纤维/聚碳酸酯(CF / PC),Kevlar 49纤维/聚砜(K49 / PSF)和Kevlar 49纤维/聚碳酸酯(K49 / PC) )。使用单纤维拉出试验方法,在三种不同的环境(37℃,干燥空气,盐水和炎性渗出液)中,通过极限疲劳强度和动态疲劳强度来表征界面。测试结果表明,与每种基质类型的K49界面相比,CF界面具有更高的极限粘结强度(UBS)和疲劳强度(FS)。对于给定的纤维类型,发现PC和PSF基质的界面粘结强度大约相等。盐水和渗出液接触均可使UBS和FS显着降低,而在盐水和渗出液环境中则无显着差异。疲劳结果表明,每个FRP系统的剪切应力与疲劳寿命的对数(失效循环)之间呈线性关系。 SEM照片显示,脱胶部位主要是由UBS测试界面处的胶粘剂失效引起的,而疲劳脱胶则是由胶粘剂和基体内聚失效的混合物引起的。已经成功地开发出了利用单根纤维拉出试验对纤维/基体界面结合进行动态疲劳表征的方法。在体内模拟环境中的界面键极限和疲劳强度表征应证明对开发用于长期结构整形外科植入物的抗疲劳FRP复合生物材料很有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号