首页> 外文学位 >Theory of optical guiding in free electron lasers.
【24h】

Theory of optical guiding in free electron lasers.

机译:自由电子激光器中的光导理论。

获取原文
获取原文并翻译 | 示例

摘要

The spatial properties and hence overall performance of a free electron laser will depend on the fact that such a laser is generated by an electron beam which, as both a gain and refractive medium, is transversely nonuniform. Under certain circumstances, optical guiding may be realized, where the radiation field is stably confined near the electron beam and amplified along the beam indefinitely. In the small signal regime, the three dimensional evolution of the radiation field through the interaction region is determined by an expansion in the guided modes. The expansion is made possible by implementing the biorthogonality of the eigenmodes of the coupled system. The eigenmodes are found to be of vectorial form with three components, one specifies the guided radiation mode and the other two describe the density and energy modulations of the electron beam.;The numerical and analytical methods are developed for solutions of the guided modes. The former approach leads to a merit function with every minimum corresponding to a discrete guided mode. In the latter approach a variational approximation technique capable of giving all the characteristics of the guided modes is derived.;In the high gain regime, optical guiding may become dominant as the radiation field being amplified through the interaction region, resulting in a resonator with different patterns of propagation in forward and backward passes. The guided mode expansion is applied to the analysis of such novel resonator and design strategies are proposed. It is found that maximal gain and optimal transverse mode quality can be achieved simultaneously and the resonator be made optimal at high gain while stable at low gain, in addition, proper configurations of asymmetrical cavity can be used for the reduction of power loading on the cavity mirrors without affecting either gain or mode quality.
机译:自由电子激光器的空间特性以及因此的整体性能将取决于这样的事实,即这种激光器是由电子束产生的,该电子束作为增益介质和折射介质两者在横向上是不均匀的。在某些情况下,可以实现光导,其中辐射场稳定地限制在电子束附近,并无限地沿着电子束放大。在小信号状态下,通过相互作用区域的辐射场的三维演化是由导模的扩展确定的。通过实现耦合系统的本征模的生物正交性,可以进行扩展。本征模被发现是矢量形式,具有三个组成部分,一个确定了引导辐射模式,另外两个描述了电子束的密度和能量调制。;开发了求解引导模式的数值和解析方法。前一种方法产生了一个价值函数,每个最小值对应一个离散的引导模式。在后一种方法中,推导了一种能够提供所有导模特性的变分近似技术。在高增益状态下,随着辐射场通过相互作用区域被放大,光导可能会占主导地位,从而导致谐振器具有不同的特性。向前和向后传播的传播方式。将导模扩展应用于这种新型谐振器的分析并提出了设计策略。发现可以同时实现最大增益和最佳横向模式质量,并使谐振器在高增益时最佳,而在低增益时稳定,此外,可以使用非对称腔的适当配置来减少腔上的功率负载反射镜而不影响增益或模式质量。

著录项

  • 作者

    Xie, Ming.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Physics Radiation.
  • 学位 Ph.D.
  • 年度 1989
  • 页码 110 p.
  • 总页数 110
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号