首页> 外文学位 >Three-dimensional dynamics of helical springs for automotive valve trains.
【24h】

Three-dimensional dynamics of helical springs for automotive valve trains.

机译:汽车气门机构螺旋弹簧的三维动力学。

获取原文
获取原文并翻译 | 示例

摘要

Valve springs play a very important role in the performance of the automobile engine. For example, in high speed fatigue tests of automobile engines, valve springs often fail first. In the past, the dynamics of valve spring was modeled by a second order partial differential equation, the wave equation. In formulating this dynamic equation, only two terms of strain and kinetic energy were included. The springs were assumed to have circular cross section wire, constant pitch angle and radius.;This research is based on the more general assumption that the valve spring has varying pitch angle and radius. This type of spring is named the general helix spring. A total of six energy terms are included in deriving the dynamic equations. Static compression tests have shown that the force computed from this new model is more accurate than from other formulae. This investigation revealed that widely used Kelvin curvature and torsion formulae, and spring force formulae are in error when applied to the general helix spring. A set of new formulae for calculating curvature, torsion and spring force are derived, which contain the old formulae as a subset.;It is found that during high speed compression, the numerical solution of a simple wave equation is not physically feasible, because of coil clash. It is necessary to adopt a moving boundary condition. The general valve spring dynamic equation is solved by the finite difference method with tracking of the moving boundary. The moving boundary solution allows the model to accurately predict coil clash and spring force. The numerical results are in very good agreement with the experimental data taken from a 1983 Pontiac, family-II, 1.8 liter, four cylinder OHC engine.;This mathematical model of a valve spring is useful in optimal spring design, and could be used in larger cam-follower-valve models to study the dynamics of automobile cam systems. The static and dynamic behavior of a newly designed spring can be predicted accurately by this model before any prototype is actually made. This model of the general helix spring can be applied to any helical springs.
机译:气门弹簧在汽车发动机的性能中起着非常重要的作用。例如,在汽车发动机的高速疲劳测试中,气门弹簧通常首先失效。过去,气门弹簧的动力学是通过二阶偏微分方程(波动方程)建模的。在建立该动力学方程式时,仅包括应变和动能两个项。假定弹簧具有圆形横截面金属丝,恒定的螺距角和半径。本研究基于更普遍的假设,即阀弹簧具有变化的螺距角和半径。这种弹簧被称为通用螺旋弹簧。推导动力学方程式时总共包括六个能量项。静态压缩测试表明,从该新模型计算出的力比从其他公式得出的力更准确。这项研究表明,广泛应用于开尔文的曲率和扭转公式以及弹簧力公式在应用于一般螺旋弹簧时是错误的。推导了一组新的计算曲率,扭力和弹力的公式,其中包含了旧公式作为子集。发现在高速压缩过程中,由于波动的原因,简单波动方程的数值解在物理上不可行。线圈冲突。必须采用移动边界条件。通过跟踪运动边界的有限差分法求解一般的气门弹簧动力学方程。运动边界解使模型可以准确预测线圈碰撞和弹簧力。数值结果与1983年Pontiac系列II的1.8升四缸OHC发动机的实验数据非常吻合;该气门弹簧的数学模型可用于优化弹簧设计,并可用于较大的凸轮从动阀模型来研究汽车凸轮系统的动力学。在实际制作任何原型之前,可以通过此模型准确预测新设计弹簧的静态和动态行为。普通螺旋弹簧的这种模型可以应用于任何螺旋弹簧。

著录项

  • 作者

    Lin, Yuyi.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Automotive.;Engineering Mechanical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 1989
  • 页码 120 p.
  • 总页数 120
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号