首页> 外文学位 >Testing for polynomial regression using nonparametric regression techniques
【24h】

Testing for polynomial regression using nonparametric regression techniques

机译:使用非参数回归技术测试多项式回归

获取原文
获取原文并翻译 | 示例

摘要

In regression analysis, it is always important to test the validity of the assumed model prior to making inferences regarding the population of interest. In this investigation, we utilize nonparametric regression techniques to test the validity of a k th order polynomial model. The departures from the polynomial model are assumed to belong to a smooth class of functions; a parametric form is not assumed. Two tests based on nonparametric regression fits to the residuals from k th order polynomial regression are proposed. The first utilizes a polynomial regression fit of order (m + k $-$ 1) to the residuals from k th order polynomial regression. Then m is allowed to grow with n, the sample size, as n tends to infinity. A test statistic based on this estimator is formulated and its asymptotic distribution under alternatives converging to the null at a rate of $msp{1/4}$/$sqrt{n}$ is derived. The second test proposed is based on a statistic utilizing a 2k th order smoothing spline fit to the residuals from k th order polynomial regression. Its asymptotic distribution under alternatives converging to the null at a rate of ($nlambdasp{1/4k})sp{-1/2}$ where $lambda$ is the smoothing parameter, is derived. We note that these rates of convergence are slower than the parametric rate of $nsp{-1/2}$. Large sample comparisons of the two tests are conducted via Pitman asymptotic relative efficiently and the smoothing spline test is seen to be more efficient than the polynomial regression based test. A small-scale simulation study conducted in order to compare the two tests in finite samples did not produce a clear winner in terms of power.
机译:在回归分析中,在推断出感兴趣的种群之前,测试假设模型的有效性总是很重要的。在这项研究中,我们利用非参数回归技术来测试k阶多项式模型的有效性。假设多项式模型的偏离属于平稳函数类别;不采用参数形式。提出了两种基于非参数回归的检验,以拟合k阶多项式回归的残差。第一种利用阶次(m + k $-$ 1)与第k阶多项式回归的残差的多项式回归拟合。然后,随着n趋于无穷大,使m随着样本大小n增长。制定了基于此估计量的检验统计量,并得出了以$ msp {1/4} $ / $ sqrt {n} $的速率收敛到零值的替代方案下的渐近分布。提出的第二项测试基于一个统计量,该统计量使用一个2k阶平滑样条拟合到k阶多项式回归的残差。推导了以($ nlambdasp {1 / 4k})sp {-1/2} $(其中$ lambda $是平滑参数)的速率收敛到零值的情况下的渐近分布。我们注意到,这些收敛速度比$ nsp {-1/2} $的参数速度慢。通过Pitman渐近相对有效地进行了两个测试的大样本比较,并且平滑样条测试比基于多项式回归的测试更有效。为了比较有限样本中的两个测试而进行的小规模模拟研究并未在功率方面产生明显的胜利者。

著录项

  • 作者

    Jayasuriya, Bodhini Rasika.;

  • 作者单位

    Texas A&M University.;

  • 授予单位 Texas A&M University.;
  • 学科 Statistics.
  • 学位 Ph.D.
  • 年度 1990
  • 页码 84 p.
  • 总页数 84
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号