首页> 外文学位 >Flame blowout and pollutant emissions in vitiated combustion of conventional and bio-derived fuels.
【24h】

Flame blowout and pollutant emissions in vitiated combustion of conventional and bio-derived fuels.

机译:传统燃料和生物燃料的烟气燃烧中的火焰爆破和污染物排放。

获取原文
获取原文并翻译 | 示例

摘要

The widening gap between the demand and supply of fossil fuels has catalyzed the exploration of alternative sources of energy. Interest in the power, water extraction and refrigeration (PoWER) cycle, proposed by the University of Florida, as well as the desirability of using biofuels in distributed generation systems, has motivated the exploration of biofuel vitiated combustion. The PoWER cycle is a novel engine cycle concept that utilizes vitiation of the air stream with externally-cooled recirculated exhaust gases at an intermediate pressure in a semi-closed cycle (SCC) loop, lowering the overall temperature of combustion. It has several advantages including fuel flexibility, reduced air flow, lower flame temperature, compactness, high efficiency at full and part load, and low emissions. Since the core engine air stream is vitiated with the externally cooled exhaust gas recirculation (EGR) stream, there is an inherent reduction in the combustion stability for a PoWER engine. The effect of EGR flow and temperature on combustion blowout stability and emissions during vitiated biofuel combustion has been characterized. The vitiated combustion performance of biofuels methyl butanoate, dimethyl ether, and ethanol have been compared with n-heptane, and varying compositions of syngas with methane fuel. In addition, at high levels of EGR a sharp reduction in the flame luminosity has been observed in our experimental tests, indicating the onset of flameless combustion. This drop in luminosity may be a result of inhibition of processes leading to the formation of radiative soot particles. One of the objectives of this study is finding the effect of EGR on soot formation, with the ultimate objective of being able to predict the boundaries of flameless combustion. Detailed chemical kinetic simulations were performed using a constant-pressure continuously stirred tank reactor (CSTR) network model developed using the Cantera combustion code, implemented in C++. Results have been presented showing comparative trends in pollutant emissions generation, flame blowout stability, and combustion efficiency. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)
机译:化石燃料供需之间的差距扩大,促进了对替代能源的探索。佛罗里达大学提出的对电力,水提取和制冷(PoWER)循环的兴趣以及在分布式发电系统中使用生物燃料的需求促使人们探索生物燃料的燃烧。 PoWER循环是一种新颖的发动机循环概念,利用半封闭循环(SCC)回路中压下空气流与外部冷却的再循环废气的悬浮作用,降低了整体燃烧温度。它具有几个优点,包括燃料灵活性,减少的空气流量,较低的火焰温度,紧凑性,满负荷和部分负荷时的高效率以及低排放。由于核心发动机空气流与外部冷却的废气再循环(EGR)流一起消失,因此PoWER发动机的燃烧稳定性固有地降低。表征了EGR流量和温度对生物质燃料燃烧过程中燃烧爆破稳定性和排放的影响。已将生物燃料丁酸甲酯,二甲醚和乙醇的燃烧性能与正庚烷进行了比较,以及合成气与甲烷燃料的不同组成。此外,在我们的实验测试中,在高水平的EGR的情况下,火焰发光度急剧下降,这表明无焰燃烧的开始。发光度的下降可能是由于抑制了导致放射状烟尘颗粒形成的过程的结果。这项研究的目的之一是发现EGR对烟灰形成的影响,其最终目的是能够预测无焰燃烧的边界。使用恒压连续搅拌釜反应器(CSTR)网络模型执行详细的化学动力学模拟,该模型使用Cantera燃烧规范开发,并以C ++实现。结果表明,污染物排放的产生,火焰的稳定性和燃烧效率具有比较趋势。 (可通过佛罗里达大学图书馆网站获得本文的全文。请检查http://www.uflib.ufl.edu/etd.html)

著录项

  • 作者

    Singh, Bhupinder.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Engineering Aerospace.;Engineering Mechanical.;Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 267 p.
  • 总页数 267
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号