首页> 外文学位 >Fatou theorems for some nonlinear elliptic partial differential equations.
【24h】

Fatou theorems for some nonlinear elliptic partial differential equations.

机译:一些非线性椭圆型偏微分方程的Fatou定理。

获取原文
获取原文并翻译 | 示例

摘要

We consider the p-Laplacian equation, div({dollar}vertnabla{dollar}u{dollar}vertsp{lcub}rm p-2{rcub}nabla{dollar}u) = 0, and other related nonlinear elliptic partial differential equations. We prove that if D is a Lipschitz domain and u a nonnegative solution of the p-Laplacian equation there exits {dollar}beta >{dollar} 0, depending on p, n and the Lipschitz character of D, such that the set E{dollar}sb{lcub}rm u{rcub}{dollar} of points of the boundary, {dollar}partial{dollar}D, where u has nontangential limit has Hausdorff dimension {dollar}{lcub}geq{rcub}beta{dollar}. Examples by Wolff and Lewis show that E{dollar}sb{lcub}rm u{rcub}{dollar} could have zero surface measure; our result ensures that E{dollar}sb{lcub}rm u{rcub}{dollar} is far from being empty. In the case of smooth domains we also obtain that {dollar}beta{dollar} tends to n {dollar}-{dollar} 1 as p tends to 2. (The natural thing to expect since the 2-Laplacian is just the Laplacian).; The method to prove these theorems requires the use of some properties of linear uniformly elliptic equations in nondivergence form. In the first half of the thesis we deal with this linear part and develop a potential theory for these equations and their adjoints, obtaining the results we will need later in the nonlinear situation. The coefficients of the linear operators are assumed to be smooth, but more importantly for our applications, all the constants involved in the basic estimates do not depend on the smoothness of the coefficients.
机译:我们考虑p-Laplacian方程div({r} = 0,以及其他相关的非线性椭圆型偏微分方程。我们证明,如果D是Lipschitz域,并且是p-Laplacian方程的ua个非负解,则根据p,n和D的Lipschitz性质,存在{dollar} beta> {dollar} 0,从而使集合E {dollar } sb {lcub} rm u {rcub} {dollar}的边界点{dollar} partial {dollar} D,其中u具有非切线极限,其Hausdorff维度为{dollar} {lcub} geq {rcub} beta {dollar} 。 Wolff和Lewis的例子表明,E {dollar} sb {lcub} rm u {rcub} {dollar}的表面度量可以为零。我们的结果确保了E {dollar} sb {lcub} rm u {rcub} {dollar}绝不是空的。在平滑域的情况下,我们还获得{dollar} beta {dollar}趋于n {dollar}-{dollar} 1,而p趋于2的情况。 。;证明这些定理的方法需要使用非散度形式的线性一致椭圆方程的某些性质。在论文的前半部分,我们处理了线性部分,并为这些方程及其伴随关系开发了一种潜在的理论,获得了在非线性情况下稍后将需要的结果。假设线性算子的系数是平滑的,但更重要的是,对于我们的应用,基本估计中涉及的所有常数均不取决于系数的平滑度。

著录项

  • 作者

    Marin-Malave, Santiago.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 1990
  • 页码 74 p.
  • 总页数 74
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号