首页> 外文学位 >Vibration and aeroelastic stability of a disk rotating in a fluid.
【24h】

Vibration and aeroelastic stability of a disk rotating in a fluid.

机译:在流体中旋转的圆盘的振动和气动弹性稳定性。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation investigates the vibration of a supercritical speed disk spinning in a fluid. It first shows that friction-generated radial traction at the clamping collar affects strongly the disk natural frequencies. The discrepancy between idealized theories and experiment grows with speed, exceeding 13% at high supercritical speed. Subsequent start/stop cycles of rotation show hysteresis of the natural frequencies. Friction, stiction, and slippage of the disk between the collars cause the discrepancies between experiment and idealized theories, which do not model friction. By superposing the stress field by an empirically determined friction radial traction with centrifugal stresses predicted by an idealized model, predicted frequencies agree with experiment at all speeds for most modes.;A linear aeroelastic stability analysis shows that the disk experiences traveling wave flutter. It models the system as a classical plate spinning in an inviscid, compressible fluid. A finite Hankel transform technique determines the fluid motion as a function of the vibration, and the spectral Galerkin method reduces the continuous system to a discrete system. Incompressible flow is then assumed. The analysis predicts the flutter mode. Prediction of flutter frequency as a function of flutter speed agrees qualitatively with experiment.;Experiments then describe the aerodynamically excited supercritical disk vibration. For most fluid densities, a single supercritical backward wave becomes unstable. At pre-flutter speeds, the disk vibrates at its natural frequencies because of excitation from unsteady fluid pressure, but at the flutter speed and at higher speeds the fluid and the disk are strongly coupled. Coupling can be so strong that the post-flutter frequency becomes nearly independent of rotation speed, even though the disk stiffens with increasing speed. Frequency and amplitude measurements when the fluid is at sub-atmospheric pressure show how the flutter speed, frequency, and mode depend on the ratio of the fluid density to the disk density. They also show that disk flutter occurs in subsonic and often in incompressible flow.
机译:本文研究了超临界速度盘在流体中旋转的振动。它首先表明,在夹紧轴环处由摩擦产生的径向牵引力会严重影响磁盘的固有频率。理想化理论与实验之间的差异会随着速度而增长,在超临界条件下,其速度超过13%。随后的旋转开始/停止循环显示出固有频率的磁滞。磁盘在轴环之间的摩擦,粘滞和打滑会导致实验理论与理想理论之间的差异,这些差异无法模拟摩擦。通过由经验确定的摩擦径向牵引力与理想化模型预测的离心应力叠加应力场,在大多数模式下,预测频率与所有速度下的实验吻合。线性气动弹性稳定性分析表明,盘片经历了行波颤动。它将系统建模为在无粘性,可压缩流体中旋转的经典平板。有限的汉克尔变换技术确定流体运动是振动的函数,而频谱Galerkin方法将连续系统简化为离散系统。然后假定不可压缩的流动。分析预测颤动模式。扑动频率作为扑动速度的函数的预测与实验定性一致。然后,实验描述了气动激发的超临界盘振动。对于大多数流体密度,单个超临界后向波变得不稳定。在预颤振速度下,由于不稳定的流体压力激发,磁盘以其固有频率振动,但在颤振速度和较高速度下,流体和磁盘牢固地耦合。即使磁盘随着速度增加而变硬,耦合也可能非常牢固,以至于颤振后频率几乎与旋转速度无关。当流体处于低于大气压时的频率和幅度测量结果表明,颤振速度,频率和模式如何取决于流体密度与磁盘密度的比率。他们还表明,盘颤动以亚音速发生,并且经常以不可压缩的流动发生。

著录项

  • 作者

    D'Angelo, Charles, III.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Mechanical engineering.
  • 学位 Ph.D.
  • 年度 1991
  • 页码 121 p.
  • 总页数 121
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号