首页> 外文学位 >Biomedical signal processing and pattern recognition by artificial neural networks.
【24h】

Biomedical signal processing and pattern recognition by artificial neural networks.

机译:通过人工神经网络进行生物医学信号处理和模式识别。

获取原文
获取原文并翻译 | 示例

摘要

We developed an artificial-neural-network-based adaptive filter (ANNADF) for nonlinear biomedical signal filtering and modeling. We addressed the issues of (1) the stability condition, (2) convergence rate, (3) generalization capability for noise elimination, and (4) the sensitivity towards weight error of the ANNADF. We tested the performance of the ANNADF for simulated linear and nonlinear signals and sampled biomedical signals. Based on the ANNADF, we developed an ANN-based adaptive matched filter for QRS detection, and an ANN-based multichannel adaptive filter for evoked potential signal enhancement. All the results were compared with those of linear filters, and the comparison results show than ANN-based filters outperform linear filters for nonlinear biomedical signal processing applications. We also proposed several methods to reduce the excessive number of neurons and synaptic weights in a feedforward, multi-layer perceptron artificial neural network. These methods were applied to several typical classification problems, as well as ECG pattern classification and nonlinear mapping of speech modeling patterns. Results show that this approach offers a potentially systematic tool to determine the number of hidden units of feedforward ANN models, and thus, to improve the efficiency of pattern recognition by ANN models.
机译:我们开发了一种基于人工神经网络的自适应滤波器(ANNADF),用于非线性生物医学信号的滤波和建模。我们解决了以下问题:(1)稳定性条件;(2)收敛速度;(3)消除噪声的通用能力;(4)ANNADF对权重误差的敏感性。我们针对模拟的线性和非线性信号以及采样的生物医学信号测试了ANNADF的性能。基于ANNADF,我们开发了用于QRS检测的基于ANN的自适应匹配滤波器,以及用于诱发电位信号增强的基于ANN的多通道自适应滤波器。将所有结果与线性滤波器进行了比较,比较结果表明,基于非线性神经网络的滤波器在非线性生物医学信号处理应用中的性能优于线性滤波器。我们还提出了几种减少前馈,多层感知器人工神经网络中神经元和突触权重过多的方法。这些方法已应用于几种典型的分类问题,以及ECG模式分类和语音建模模式的非线性映射。结果表明,该方法为确定前馈ANN模型的隐藏单元数量提供了一种潜在的系统工具,从而提高了ANN模型识别模式的效率。

著录项

  • 作者

    Xue, Qiuzhen.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 1991
  • 页码 244 p.
  • 总页数 244
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号