首页> 外文学位 >Development and application of methods for mass spectrometry imaging of lipids across biological surfaces.
【24h】

Development and application of methods for mass spectrometry imaging of lipids across biological surfaces.

机译:跨生物表面的脂质质谱成像方法的开发和应用。

获取原文
获取原文并翻译 | 示例

摘要

In this thesis I will present the development of time of flight secondary ion mass spectrometric (ToF-SIMS) imaging methodology for biological analyses as well as applications that have yielded information about the role of lipids in membrane organization.In the first chapter, I introduce the plasma membrane and describe its fundamental role in maintaining life through the dynamic remodeling of its structure. I focus on two concepts that are believed to influence the localized chemical make up and structure of the membrane, intrinsic curvature and lipid domains.In Chapter 2 I report a protocol for the use of SIMS imaging to comparatively quantify the relative difference in cholesterol level between the plasma membranes of two cells. This development enables direct comparison of the chemical effects of different drug treatments and incubation conditions in the plasma membrane at the single-cell level. Relative, quantitative ToF-SIMS imaging was used to compare macrophage cells treated to contain elevated levels of cholesterol with respect to control cells.Chapter 3 investigates prospects for three-dimensional SIMS analysis of biological materials using model multilayer structures and single cells. Molecular depth profile studies involving dehydrated dipalmitoylphosphatidylcholine (DPPC) organic films indicate that cell membrane lipid materials do not experience significant chemical damage when bombarded with C60+ ion fluences greater than 1015 ions/cm2. Moreover, depth profile analyses of DPPC--sucrose frozen multilayer structures suggest that biomolecule information can be uncovered after the C60 + sputter removal of a 20 nm overlayer with no appreciable loss of underlying molecular signal.Two methods that were developed to increase the reproducibility of biological SIMS analysis are covered in Chapter 4. First I demonstrate the utility of the C60+ cluster ion projectile for sputter cleaning biological surfaces to reveal obscured spatio-chemical information. Following the removal of nanometers of material from the surface using sputter cleaning a frozen-patterned cholesterol film and a freeze-dried tissue sample were analyzed using ToF-SIMS imaging. In both experiments the chemical information was maintained after the sputter dose, due to the minimal chemical damage caused by C60+ bombardment. The second method covered in Chapter 4 is freeze-etching, the practice of removing excess surface water from a sample through sublimation into the vacuum of the analysis environment. This method was used to cryogenically preserve single cells for ToF-SIMS imaging analysis. By removing the excess water, which condenses onto the sample in vacuo, a uniform surface is produced that is ideal for imaging by static SIMS. I demonstrate that the conditions employed to remove deposited water do not adversely affect cell morphology and do not redistribute molecules in the top most surface layers.In Chapter 5, I describe a device which has been designed to prepare frozen, hydrated single cell cultures with a freeze fracture methodology for ToF-SIMS analysis in an ION-TOF (GmbH) TOF-SIMS IV mass spectrometer. The device reproducibly produces frozen hydrated sample surfaces for SIMS analysis. I show that SIMS analysis with the Bi32+ produces high-resolution molecular images of single PC12 cells in an ice matrix. I also show that the combination of ionization enhancements that are provided by both the ice matrix and the cluster ion source facilitates the localization of lipid ions that have not been localized in these cells previously.In Chapter 6 ToF-SIMS imaging was used to demonstrate that lipid domain formation in mating single-cell organisms is driven by changes in membrane structure. I report that time of flight secondary ion mass spectrometry images of mating Tetrahymena thermophila acquired before, during and after mating demonstrate that lipid domain formation, identified as a decrease in the lamellar lipid phosphatidylcholine, does not precede structural changes in the membrane. Rather, domains are formed in response to function during cell-to-cell conjugation. ToF-SIMS imaging has been used to collect information with wide implications in all membrane processes. (Abstract shortened by UMI.)
机译:在这篇论文中,我将介绍用于生物分析的飞行时间二次离子质谱(ToF-SIMS)成像方法的发展以及已获得有关脂质在膜组织中作用的信息的应用。在第一章中,我将介绍质膜,并描述其通过动态重塑结构来维持生命的基本作用。我关注两个被认为会影响膜的局部化学组成和结构,固有曲率和脂质结构域的概念。在第二章中,我报告了使用SIMS成像技术比较量化胆固醇水平相对差异的方案。两个细胞的质膜。这种发展使得可以在单细胞水平上直接比较质膜上不同药物处理和孵育条件的化学作用。相对定量的ToF-SIMS成像用于比较处理后的胆固醇相对于对照细胞而言含有高水平胆固醇的巨噬细胞。第三章探讨了使用模型多层结构和单细胞对生物材料进行三维SIMS分析的前景。涉及脱水二棕榈酰磷脂酰胆碱(DPPC)有机膜的分子深度分布研究表明,当细胞膜脂质材料受到大于1015离子/ cm2的C60 +离子通量轰击时,不会受到明显的化学损伤。此外,DPPC-蔗糖冷冻多层结构的深度剖面分析表明,C60 +溅射去除20 nm覆盖层后可以发现生物分子信息,而没有潜在的分子信号明显损失。开发了两种方法来提高PPC的蔗糖重现性。第4章介绍了生物SIMS分析。首先,我演示了C60 +团簇离子弹丸用于溅射清洁生物表面以揭示模糊的时空化学信息的实用性。使用溅射清洗从表面去除纳米材料后,使用ToF-SIMS成像分析了冷冻模式的胆固醇膜和冷冻干燥的组织样本。在两个实验中,由于C60 +轰击造成的最小化学损伤,在溅射剂量后仍保留了化学信息。第4章介绍的第二种方法是冷冻蚀刻,即通过升华到分析环境的真空中除去样品中多余的表面水的做法。该方法用于超低温保存单细胞,用于ToF-SIMS成像分析。通过去除多余的水,真空中的水会凝结在样品上,从而形成均匀的表面,非常适合通过静态SIMS成像。我证明了去除沉积水的条件不会对细胞形态产生不利影响,也不会在最顶层的表面层中重新分布分子。在第5章中,我描述了一种设计用于制备冷冻,水合单细胞培养物的装置。 ION-TOF(GmbH)TOF-SIMS IV质谱仪中进行ToF-SIMS分析的冷冻断裂方法。该设备可重现地产生冷冻的水合样品表面,用于SIMS分析。我表明,使用Bi32 +进行SIMS分析可在冰基质中产生单个PC12细胞的高分辨率分子图像。我还展示了冰基质和簇离子源提供的电离增强作用的组合有助于先前未在这些细胞中定位的脂质离子的定位。在第6章中,ToF-SIMS成像证明了交配单细胞生物中脂质结构域的形成是由膜结构的变化驱动的。我报道在交配之前,期间和之后交配的嗜热四膜膜虫的飞行时间二次离子质谱图显示,脂质层形成(被识别为片状脂质磷脂酰胆碱的减少)没有出现在膜的结构变化之前。相反,响应于细胞间结合期间的功能而形成结构域。 ToF-SIMS成像已用于收集在所有膜工艺中具有广泛意义的信息。 (摘要由UMI缩短。)

著录项

  • 作者

    Kurczy, Michael E.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Chemistry Analytical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 125 p.
  • 总页数 125
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号