首页> 外文学位 >Tunable resonances in plasmonic crystals.
【24h】

Tunable resonances in plasmonic crystals.

机译:等离子体晶体中的可调共振。

获取原文
获取原文并翻译 | 示例

摘要

Plasmonic crystals---metallic grating arrays that resonantly couple free-space light into collective electron oscillations (surface plasmons)---are unique optical materials because they can confine and manipulate electromagnetic fields at subwavelength scales. Surface plasmon resonances can be tuned by changing factors such as grating geometry, surrounding dielectric environment, materials and excitation conditions. Most work has focused on the former parameters but not the latter, which are critical for controlling electromagnetic field confinement and plasmonic band structures. This dissertation describes several plasmonic crystals whose resonances can be tuned over a wide frequency range, from the optical to near infrared. First, by combining near-field and far-field characterization techniques, we provided direct evidence that surface plasmons mediated enhanced optical transmission of nanohole arrays. Near-field scanning optical microscopy images clearly revealed evanescent surface plasmon waves on gold films perforated with microscale arrays of nanoholes, and optical transmission spectra exhibited narrow resonances corresponding to high-order surface plasmon modes. Second, angle-resolved measurements of subwavelength hole arrays in gold and palladium were carried out to high angles and were converted to plasmonic band diagrams. Individual resonant modes were readily identified, and unusual photonic-plasmonic resonances from Rayleigh anomalies and surface plasmons polaritons were discovered. Finally, a new type of plasmonic crystal---two-dimensional arrays of nanopyramids---was used as a platform to screen a wide range of metals side-by-side and under different excitation conditions. These studies not only revealed unexpected plasmonic materials but also provided the first comprehensive understanding on how to tune surface plasmons for specific applications, such as biological and chemical sensing.
机译:等离子晶体-将自由空间光共振耦合到集体电子振荡(表面等离子体激元)中的金属光栅阵列-是独特的光学材料,因为它们可以在亚波长范围内限制和操纵电磁场。可以通过改变诸如光栅几何形状,周围的介电环境,材料和激发条件之类的因素来调整表面等离子体激元共振。大多数工作都集中在前者参数上,而不是后者,后者对于控制电磁场限制和等离子体激元能带结构至关重要。本文介绍了几种等离子体晶体,其共振可以在从光学到近红外的很宽的频率范围内进行调谐。首先,通过结合近场和远场表征技术,我们提供了直接的证据,表明表面等离子体激元介导了纳米孔阵列增强的光学传输。近场扫描光学显微镜图像清楚地显示了穿孔有纳米级微孔阵列的金膜上的van逝表面等离激元波,并且光学透射光谱显示出与高阶表面等离激元模式相对应的窄共振。其次,对金和钯中的亚波长孔阵列的角度分辨测量进行了大角度分析,并转换为等离激元能带图。容易识别出各个共振模式,并发现了来自瑞利异常和表面等离子体激元的异常光子-等离子体共振。最后,一种新型的等离子晶体-纳米金字塔的二维阵列-被用作一个平台,用于在不同的激发条件下并排筛选多种金属。这些研究不仅揭示了出乎意料的等离激元材料,而且还提供了关于如何针对特定应用(例如生物和化学传感)调整表面等离激元的首次全面了解。

著录项

  • 作者

    Gao, Hanwei.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Chemistry Physical.Physics Optics.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 205 p.
  • 总页数 205
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号