首页> 外文学位 >Influence of Structure and Surface Chemistry of Porous Carbon Electrodes on Supercapacitor Performance.
【24h】

Influence of Structure and Surface Chemistry of Porous Carbon Electrodes on Supercapacitor Performance.

机译:多孔碳电极的结构和表面化学性质对超级电容器性能的影响。

获取原文
获取原文并翻译 | 示例

摘要

Electrochemical double layer capacitors, which rely on electrosorption of ions in nanostructured carbon electrodes, can supplement or even replace traditional batteries in energy harvesting and storage applications. While supercapacitors offer > 10 kW/kg power densities, their ~5 Wh/kg energy densities are insufficient for many automotive and grid storage applications. Most prior efforts have focused on novel high-performing ionic liquid electrolytes and porous carbons with tunable pore diameters and high specific surface areas. However, existing research lacks fundamental understanding of the influence of surface heterogeneity and disorder, such as graphitic defects and functional groups, on key electrosorption properties at electrode-electrolyte interfaces. These interactions significantly impact charge accumulation densities, ion transport mechanisms, and electrolyte breakdown processes. Subsequently, they must be investigated to optimize ion screening, charge mobilities, and operating voltage windows of the devices. The research in this dissertation examined the influence of surface functional groups and structural ordering on capacitance, electrosorption dynamics, and electrochemical stability of external and internal surface of carbon electrodes. High-temperature vacuum annealing, air oxidation, hydrogenation, and amination were used to tune pore surface compositions and decouple key structural and chemical properties of carbide-derived carbons. The approach combined materials characterization by a variety of techniques, neutron scattering studies of ion dynamics, electrochemical testing, and MD simulations to investigate the fundamental intermolecular interactions and dynamics of ions electrosorption in different pore architectures and on planar graphene surfaces. Contrary to expected results and existing theories, defect removal via defunctionalization and graphitization decreased capacitance. Hydrogenated surfaces benefitted electrosorption, while oxygen-containing groups, which increased the wettability and ionophilicity of electrodes, positively impacted capacitance by decreasing ion densities in confined pores and improving electrolyte diffusion. The influence of surface defects strongly depended on ion properties, carbon particle size and internal-to-external surface ratio, porosity, and ion confinement. These fundamental concepts were applied to several energy storage systems, including high-performance coarse-grained and core-shell carbide derived carbon electrodes, a novel in situ spectroelectrochemical analysis method, and design of an environmentally benign "green" supercapacitor.
机译:依赖于纳米结构碳电极中离子的电吸附的电化学双层电容器可以在能量收集和存储应用中补充甚至替代传统电池。超级电容器的功率密度大于10 kW / kg,但其约5 Wh / kg的能量密度不足以用于许多汽车和电网存储应用。大多数先前的努力集中在具有可调的孔径和高比表面积的新型高性能离子液体电解质和多孔碳。但是,现有的研究缺乏对表面异质性和无序性(例如石墨缺陷和官能团)对电极-电解质界面关键电吸附性能的影响的基本了解。这些相互作用会显着影响电荷积累密度,离子传输机制和电解质击穿过程。随后,必须对其进行研究,以优化设备的离子筛选,电荷迁移率和工作电压窗口。本文研究了表面官能团和结构顺序对碳电极内外表面电容,电吸附动力学和电化学稳定性的影响。高温真空退火,空气氧化,氢化和胺化反应可用于调节孔表面成分,并使碳化物衍生碳的关键结构和化学性质脱钩。该方法结合了各种技术的材料表征,离子动力学的中子散射研究,电化学测试和MD模拟,以研究在不同的孔结构和平面石墨烯表面上离子电吸附的基本分子间相互作用和动力学。与预期结果和现有理论相反,通过去功能化和石墨化去除缺陷可降低电容。氢化表面有利于电吸附,而含氧基团可提高电极的润湿性和亲离子性,可通过减小受限孔中的离子密度并改善电解质扩散来积极影响电容。表面缺陷的影响在很大程度上取决于离子性质,碳粒径和内外表面比率,孔隙率和离子限制。这些基本概念已应用于多种能量存储系统,包括高性能的粗颗粒和核壳型碳化物衍生碳电极,新颖的原位光谱电化学分析方法以及对环境无害的“绿色”超级电容器的设计。

著录项

  • 作者

    Dyatkin, Boris.;

  • 作者单位

    Drexel University.;

  • 授予单位 Drexel University.;
  • 学科 Materials science.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 270 p.
  • 总页数 270
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号