首页> 外文学位 >Bulk and Surface Chemistry Modification of Highly Porous Carbon for Supercapacitors.
【24h】

Bulk and Surface Chemistry Modification of Highly Porous Carbon for Supercapacitors.

机译:用于超级电容器的高多孔碳的本体和表面化学改性。

获取原文
获取原文并翻译 | 示例

摘要

Highly porous carbon prepared through sol-gel processing is an excellent electrode material for supercapacitors, also known as electrochemical capacitors, because of its high surface area and pore volume, good conductivity, and low cost. Research has mostly focused on increasing the surface area of the carbon to improve charge storage, but there are limits to how large this value can be while still maintaining good electrochemical performance of the material. Alternatively, carbon can be modified with foreign elements, either in the bulk or on the pore surfaces, to induce pseudocapacitive reactions that can increase capacitance. Modified samples can also be tested at higher working voltages, which significantly increase the energy and power densities. In this work, highly porous carbon is modified with nitrogen and tested as electrodes in supercapacitors. Modification significantly increases the wettability of the carbon, and the capacitance increases with increasing nitrogen added. However, too much nitrogen can cause pore blockage and decrease accessible surface area, limiting the capacitance. Highly porous carbon, both with and without nitrogen on the pore surfaces, is then tested at higher working voltages. Increasing the voltage from 2V to 3V significantly improves both the energy density and power density. Finally, porous carbon was also synthesized from lignin, a complex polymer derived from natural resources and a waste product in the paper industry. Purification removed over half of the impurities and resulted in porous carbon with four times the internal surface area compared to unpurified lignin. When tested in devices, lignin-derived carbon shows promise as low-cost, renewable material for high performance supercapacitors.
机译:通过溶胶-凝胶工艺制备的高度多孔的碳是超级电容器(也称为电化学电容器)的极佳电极材料,因为它具有高的表面积和孔体积,良好的导电性以及低成本。研究主要集中在增加碳的表面积以改善电荷存储上,但是在保持材料的良好电化学性能的同时,该值有多大是有局限的。可选地,碳可以用大块内或孔表面上的外来元素进行修饰,以引发可增加电容的伪电容反应。修改后的样品也可以在更高的工作电压下进行测试,这会显着提高能量和功率密度。在这项工作中,高度多孔的碳被氮气改性并作为超级电容器中的电极进行了测试。改性显着增加了碳的润湿性,并且电容随着氮的添加而增加。但是,过多的氮会导致孔堵塞并减少可及的表面积,从而限制了电容。然后在较高的工作电压下测试孔表面上有无氮的高度多孔碳。将电压从2V增加到3V可以显着提高能量密度和功率密度。最后,还从木质素合成了多孔碳,木质素是一种来自自然资源的复杂聚合物,是造纸工业的废品。纯化去除了一半以上的杂质,与未纯化的木质素相比,得到的多孔碳的内表面积为原来的四倍。在设备中进行测试时,木质素衍生的碳有望作为低成本,可再生的材料用于高性能超级电容器。

著录项

  • 作者

    Candelaria, Stephanie L.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Engineering Materials Science.;Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 160 p.
  • 总页数 160
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号