首页> 外文学位 >Modelling of rail track dynamics and wheel/rail interaction.
【24h】

Modelling of rail track dynamics and wheel/rail interaction.

机译:轨道动力学和车轮/轨道相互作用的建模。

获取原文
获取原文并翻译 | 示例

摘要

A theoretical computer model for analyzing vertical dynamic responses of railway tracks and irregular wheel/rail interactions is developed. The model is capable of investigating four general areas of railway track dynamics. These are: (1) Natural vibration characteristics; (2) Dynamic track responses in the frequency domain (dynamic compliance); (3) Dynamic track responses under a stationary impact, load; and (4) Dynamic track/wheelset responses to moving wheel/rail interaction.; The track model is formulated by treating the infinitely long track as a finite length of a periodic structural system resting on a Winkler foundation. Only transversely (cross-track) symmetric dynamic responses are considered. Both the rail and the ties are described as elastic beams of either the Bernoulli-Euler type or the Timoshenko type. The ties may also be treated as discrete rigid masses. The rail is discretely supported on the ties with an intermediate spring and dashpot unit simulating the vibration attenuating effects of the fastening mechanisms and the rail pads (for concrete-tie tracks). The ties are underlaid by a distributed array of springs and dashpots representing the resilience and vibration absorbing effects of the ballast and subgrade which constitutes the track bed.; For track dynamic responses to irregular wheel/rail interactions, a wheelset model is incorporated. The wheelset model is a four degree of freedom lumped mass/spring system consisting of a two-axle truck with two wheel unsprung masses (including axle masses), the truck side frame mass and its pitch moment of inertia. For high frequency track responses and wheel/rail interaction, the vehicle components above the truck side frame are represented by a static load. The commonly used non-linear Hertzian contact model couples the wheelset and the track systems at the wheel/rail interfaces. Various types of wheel tread or rail profile shapes may be input as an excitation source to the wheel/rail interfaces as the wheels travel along on the rail at any speed.; The general equations of motion of the track system are established directly according to the Newton's law applied to a continuous structural system. The free vibrational characteristics of individual track components are obtained by using basic principles of beam vibrations. For the free vibrational analysis of the whole track as an integral structural system, the track models is divided into identical elements consisting of one rail span between two adjacent ties complete with the equivalent, frequency-dependent stiffness of the rail support. The method of exact dynamic stiffness matrix, applied to the discretized track element, is used to formulate the eigenvalue problem of the track structure. Method of solution to the eigenvalue problem is developed by incorporating the Gaussian elimination method with maximum pivoting.; The general solutions to the equations of motion of the track system are obtained by using the classical technique of modal analysis. The frequency domain solutions involve Fourier transformation and time domain solutions involve the Range-Kutta numerical routine or the Gaussian-Quadrature integration procedure. Applications of the solutions include the dynamic compliance analysis in the frequency domain, dynamic track responses to a stationary impact force, and dynamic track and wheelset responses under irregular wheel/rail interactions. Dynamic track responses include stresses/strains, displacements, accelerations, rail seat forces and ballast pressure. Wheel/rail interaction responses include wheel/rail impact forces due to various wheel tread and rail profile irregularities, wheel vertical trajectory and accelerations. A large number of numerical examples are presented and corresponding conclusions are made under a wide range of dynamic scenarios.
机译:建立了理论计算机模型,用于分析铁路轨道的垂直动力响应以及不规则的轮/轨相互作用。该模型能够研究铁路轨道动力学的四个一般领域。它们是:(1)自然振动特性; (2)频域中的动态轨道响应(动态顺应性); (3)静态冲击,载荷作用下的动态轨道响应; (4)履带/轮对对动轮/钢轨相互作用的动态响应。通过将无限长的轨道视为基于Winkler基础的周期性结构系统的有限长度来制定轨道模型。仅考虑横向(跨轨道)对称动态响应。轨道和枕木都被描述为伯努利-欧拉型或蒂莫申科型的弹性梁。系杆也可以视为离散的刚体。轨道通过中间弹簧和减震器单元离散地支撑在拉杆上,该单元模拟了紧固机构和轨道垫(用于混凝土连接轨道)的减振效果。系杆由分散的弹簧和减震器阵列构成,这些弹簧和减震器代表构成道床的道ast和路基的弹性和减震效果。为了对不规则的轮/轨相互作用进行跟踪动态响应,引入了轮对模型。轮对模型是一个四自由度集总质量/弹簧系统,由一个带两个车轮未悬挂质量(包括车轴质量)的两轴卡车,卡车侧架质量及其俯仰惯性矩组成。对于高频轨道响应和车轮/轨道相互作用,卡车侧架上方的车辆部件由静载荷表示。常用的非线性赫兹接触模型在车轮/轨道接口处将轮对和履带系统耦合。当轮子以任何速度沿轨道行进时,各种类型的轮子胎面或轨道轮廓形状可以作为激励源输入到轮子/轨道接口。轨道系统的一般运动方程式是直接根据适用于连续结构系统的牛顿定律建立的。单个轨道组件的自由振动特性是通过使用梁振动的基本原理获得的。为了对作为整体结构系统的整个轨道进行自由振动分析,轨道模型被分为相同的元素,该元素由两个相邻枕木之间的一个轨道跨度组成,并具有等效的,频率相关的轨道支撑刚度。将精确动态刚度矩阵法应用于离散化的轨道单元,用于描述轨道结构的特征值问题。通过结合具有最大枢轴的高斯消去方法来开发特征值问题的解决方法。使用经典的模态分析技术,可以得出轨道系统运动方程的一般解。频域解涉及傅立叶变换,时域解涉及Range-Kutta数值例程或高斯-正交积分过程。该解决方案的应用包括频域中的动态顺应性分析,对固定冲击力的动态跟踪响应以及在不规则的轮/轨相互作用下的动态轨迹和轮对响应。动态轨道响应包括应力/应变,位移,加速度,轨座力和压载压力。车轮/钢轨相互作用的响应包括由于各种车轮胎面和钢轨轮廓的不规则性,车轮垂直轨迹和加速度引起的车轮/钢轨冲击力。给出了大量数值示例,并在各种动态场景下得出了相应的结论。

著录项

  • 作者

    Cai, Zhenqi.;

  • 作者单位

    Queen's University at Kingston (Canada).;

  • 授予单位 Queen's University at Kingston (Canada).;
  • 学科 Engineering Civil.
  • 学位 Ph.D.
  • 年度 1992
  • 页码 327 p.
  • 总页数 327
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号