首页> 外文学位 >Control and stabilization of nonholonomic dynamic systems.
【24h】

Control and stabilization of nonholonomic dynamic systems.

机译:非完整动力系统的控制和稳定。

获取原文
获取原文并翻译 | 示例

摘要

A theoretical framework is established for the control of nonholonomic dynamic systems, i.e. dynamic systems with nonintegrable constraints. In particular, we emphasize control properties for nonholonomic systems that have no counterpart in holonomic systems. A model for nonholonomic dynamic systems is first presented in terms of differential-algebraic equations defined on a phase space. A reduction procedure is carried out to obtain reduced order state equations. Feedback is then used to obtain a control system in a normal form. The assumptions guarantee that the resulting normal form equations necessarily contain a nontrival drift vector field. Conditions for smooth ({dollar}Csp{lcub}infty{rcub}{dollar}) asymptotic stabilization to an m-dimensional equilibrium manifold are presented; we also demonstrate that a single equilibrium solution cannot be asymptotically stabilized using continuous static or dynamic state feedback. However, any equilibrium is shown to be strongly accessible and small time locally controllable. An approach using geometric phases is developed as a basis for the control of Caplygin dynamical systems, i.e. nonholonomic systems with certain symmetry properties which can be expressed by the fact that the constraints are cyclic in certain variables. The theoretical development is applied to physical examples of systems that we have studied in detail elsewhere; the control of a knife edge moving on a plane surface and the control of a wheel rolling without slipping on a plane surface. The results are also applied to the reorientation of planar multibody systems using joint torque inputs and to the reorientation of a rigid spacecraft using momentum wheel actuators, since in these examples conservation of angular momentum gives rise to nonintegrable motion invariants.
机译:建立了用于控制非完整动态系统,即具有不可积分约束的动态系统的理论框架。特别地,我们强调非完整系统的控制特性,这是完整系统中没有的。首先根据在相空间上定义的微分代数方程式,提出了一种非完整动力学系统的模型。进行还原过程以获得降阶状态方程。然后,使用反馈来获得正常形式的控制系统。这些假设保证了所得的法线形式方程必定包含非平凡的漂移矢量场。提出了将光滑的(渐近的Csp {lcub}渐近的{rcub} {dollar})渐近稳定到m维平衡流形的条件;我们还证明了使用连续的静态或动态状态反馈无法渐近稳定单个平衡解。然而,任何平衡都显示出很容易达到,并且局部时间可控。发展了一种使用几何相位的方法作为控制Caplygin动力学系统(即具有某些对称特性的非完整系统)的基础,该系统可以通过约束在某些变量中循环这一事实来表示。理论的发展被应用于我们已经在其他地方详细研究过的系统的物理示例。控制在平面上移动的刀刃以及控制在平面上不打滑的车轮滚动。该结果还适用于使用联合扭矩输入的平面多体系统的重新定向以及使用动量轮致动器的刚性航天器的重新定向,因为在这些示例中,角动量的守恒会产生不可积分的运动不变量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号