首页> 外文学位 >Computational neural networks in chemistry: Model free mapping devices for predicting chemical reactivity from molecular structure.
【24h】

Computational neural networks in chemistry: Model free mapping devices for predicting chemical reactivity from molecular structure.

机译:化学中的计算神经网络:用于从分子结构预测化学反应性的无模型制图设备。

获取原文
获取原文并翻译 | 示例

摘要

Computational neural networks (CNNs) are a computational paradigm inspired by the brain's massively parallel network of highly interconnected neurons. The power of computational neural networks derives not so much from their ability to model the brain as from their ability to learn by example and to map highly complex, nonlinear functions, without the need to explicitly specify the functional relationship. Two central questions about CNNs were investigated in the context of predicting chemical reactions: (1) the mapping properties of neural networks and (2) the representation of chemical information for use in CNNs.;Chemical reactivity is here considered an example of a complex, nonlinear function of molecular structure. CNN's were trained using modifications of the backpropagation learning rule to map a three dimensional response surface similar to those typically observed in quantitative structure-activity and structure-property relationships. The computational neural network's mapping of the response surface was found to be robust to the effects of training sample size, noisy data and intercorrelated input variables.;The investigation of chemical structure representation led to the development of a molecular structure-based connection-table representation suitable for neural network training. An extension of this work led to a BE-matrix structure representation that was found to be general for several classes of reactions. The CNN prediction of chemical reactivity and regiochemistry was investigated for electrophilic aromatic substitution reactions, Markovnikov addition to alkenes, Saytzeff elimination from haloalkanes, Diels-Alder cycloaddition, and retro Diels-Alder ring opening reactions using these connectivity-matrix derived representations. The reaction predictions made by the CNNs were more accurate than those of an expert system and were comparable to predictions made by chemists.;Computational neural networks were shown to have robust mapping properties and were capable of giving excellent predictions of chemical reactivity when trained with suitable molecular structure representations. The CNN methodology developed here may be useful for extracting reactivity rules from databases of chemical reactions.
机译:计算神经网络(CNN)是一种计算范例,其灵感来自大脑高度互连的神经元的大规模并行网络。计算神经网络的强大功能不仅仅在于它们对大脑建模的能力,还在于它们通过示例学习和映射高度复杂的非线性函数的能力,而无需明确指定函数关系。在预测化学反应的背景下,研究了两个有关CNN的中心问题:(1)神经网络的映射特性;(2)CNN中使用的化学信息的表示形式。在这里,化学反应性被认为是一个复杂的例子,分子结构的非线性函数。使用反向传播学习规则的修改来训练CNN,以绘制三维响应表面,该表面类似于在定量结构-活性和结构-性质关系中通常观察到的那些。发现神经网络对响应面的映射对于训练样本大小,嘈杂数据和相互关联的输入变量的影响是鲁棒的。;化学结构表示的研究导致了基于分子结构的连接表表示的发展。适用于神经网络训练。这项工作的扩展导致了BE矩阵结构表示形式,该表示形式对于几种反应类别都是通用的。 CNN预测了化学反应性和区域化学反应的亲电取代反应,马尔可夫可夫烯的加成,卤代烷烃的Saytzeff消除,Diels-Alder环加成反应和Diels-Alder开环反应的逆向性,使用这些连接矩阵衍生表示。 CNN的反应预测比专家系统的预测更准确,并且与化学家的预测可比。;计算神经网络被证明具有鲁棒的作图特性,并且在经过适当的训练后能够提供出色的化学反应性预测分子结构表示。此处开发的CNN方法论可用于从化学反应数据库中提取反应性规则。

著录项

  • 作者

    Elrod, David Wayne.;

  • 作者单位

    Western Michigan University.;

  • 授予单位 Western Michigan University.;
  • 学科 Chemistry Organic.;Chemistry Physical.;Artificial Intelligence.;Computer Science.
  • 学位 Ph.D.
  • 年度 1992
  • 页码 185 p.
  • 总页数 185
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号