首页> 外文学位 >Space-based robot manipulators: Dynamics and adaptive control.
【24h】

Space-based robot manipulators: Dynamics and adaptive control.

机译:天基机器人操纵器:动力学和自适应控制。

获取原文
获取原文并翻译 | 示例

摘要

The autonomous operation of free-flying robots in space requires the manipulation of objects with unknown inertia properties. As a result, the combined inertia parameters of the end-effector and load cannot be determined a priori. This problem entails further research in the application of adaptive motion control strategies for space robots. Crucial to successful controller design is an accurate model of the underlying highly coupled nonlinear dynamics of multi-body space robots. Current techniques which use momentum conservation laws to obtain reduced order differential equations of motion provide models which do not depend affinely on the unknown inertia parameters of the robot system. Consequently, new models have to be developed to allow the synthesis of adaptive control strategies.;This dissertation is concerned with the modeling of free-flying space robots and the design of adaptive motion control strategies. Specifically, we examine the generic case of articulated manipulator arms mounted on a satellite base which may or may not contain reaction wheels for satellite attitude control. The basis for our approach is the formulation of analytical models which depend affinely on the unknown inertia parameters of the system.;Using these models we develop an adaptive joint space controller for the manipulator joints and an adaptive inertial space controller for the manipulator end-effector. A novel feature of our approach is that the parameter estimates are obtained using integrals of the motion only. Moreover, recursive algorithms are provided for efficient implementation of the adaptive controllers. Other new results in this work include the use of unit quaternions in defining orientation errors of the end-effector. This leads to adaptive control schemes which stabilize the robot system. Rigorous proofs of the stability properties are established using Lyapunov stability theory. Furthermore, simulation studies of the adaptive control schemes on two example space robot systems are used to verify the theoretical results.
机译:自由飞行机器人在太空中的自主运行需要操纵惯性未知的物体。结果,不能预先确定末端执行器和负载的组合惯性参数。这个问题需要在太空机器人的自适应运动控制策略中进行进一步的研究。成功的控制器设计的关键是多体空间机器人潜在的高度耦合的非线性动力学的精确模型。使用动量守恒定律来获得运动的降阶微分方程的当前技术提供的模型并不密切依赖于机器人系统的未知惯性参数。因此,必须开发新的模型以允许自适应控制策略的综合。;本论文涉及自由飞行空间机器人的建模和自适应运动控制策略的设计。具体来说,我们研究了安装在卫星基座上的铰接机械臂的一般情况,该基座可能包含也可能不包含用于卫星姿态控制的反作用轮。我们方法的基础是建立分析模型,该模型密切依赖于系统的未知惯性参数。;使用这些模型,我们为机械手关节开发了自适应关节空间控制器,为机械手末端执行器开发了自适应惯性空间控制器。 。我们方法的一个新颖特征是仅使用运动的积分来获得参数估计。而且,提供了递归算法以有效地实现自适应控制器。这项工作的其他新结果包括使用单元四元数定义末端执行器的方向误差。这导致了使机器人系统稳定的自适应控制方案。使用Lyapunov稳定性理论建立了稳定特性的严格证明。此外,在两个示例空间机器人系统上的自适应控制方案的仿真研究用于验证理论结果。

著录项

  • 作者

    Wee, Liang-Boon.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Applied Mechanics.;Engineering System Science.;Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 1993
  • 页码 153 p.
  • 总页数 153
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号