首页> 外文学位 >Supercritical fluid extraction of chloramphenicol from milk and human serum using an analog modifier.
【24h】

Supercritical fluid extraction of chloramphenicol from milk and human serum using an analog modifier.

机译:使用类似的修饰剂从牛奶和人血清中超临界萃取氯霉素。

获取原文
获取原文并翻译 | 示例

摘要

Supercritical fluids have solvation power similar to liquids, but also possess higher diffusion coefficients and lower viscosities at the same temperature. Supercritical fluids have the potential to extract analytes at a more rapid extraction rate than possible with liquid extraction. Generally, supercritical fluid extraction (SFE), can provide extraction efficiencies comparable to Soxhlet methods, but only take 30-45 minutes, a fraction of the time needed for Soxhlet extraction, which can take up to 16 hours.;Most SFE extractions are done with non-polar carbon dioxide. Adding a polar liquid such as methanol to the carbon dioxide will increase its polarity. Only limited amount of methanol can be added, since increasing the percentage of methanol as a modifier may lead to phase separation and loss of extraction efficiency.;Antibiotics and drugs are both high in polarity and molecular weight. Chloramphenicol (CAP), an antibiotic has a molecular weight of 323.14 dalton and polar groups (aromatic nitro group, one primary and one secondary alcohol groups, secondary amino group, and keto group).;Chloramphenicol from milk and human serum can be trapped on silica gel. Modifiers that compete with chloramphenicol for silica gel active sites dramatically increase extraction yield. The effectiveness of these modifiers in increasing the extraction of chloramphenicol is determined by their structure and functional groups present.;Methanol modified supercritical carbon dioxide has been used to extract trapped CAP from silica gel. A second modifier, which is called, the analog modifier, may be added along with methanol. The choice of the second modifier depends on the chemical structure of the analyte of interest. The second modifier should possess some structural similarities to the analyte molecule so it can displace the adsorbed analyte from the matrix.;The effects of temperature, pressure, extraction time, percent water, and modifier present on the extraction efficiency have been investigated.;The role of nitromethane, the analog modifier used to extract chloramphenicol from silica gel, was also investigated. The effect of nitromethane alone was demonstrated especially with pure silica gel. The extraction efficiency did not change when methanol was used as a second modifier.;The effect of nitromethane and methanol together as modifiers, on the extraction efficiency of CAP from human serum and milk was also investigated. To obtain maximum extraction efficiency two modifiers were necessary. It was found that 42% of the added CAP could be extracted from milk and that CAP could be quantitatively extracted from human serum consistently. It has been found that each modifier may play a different role in the extraction. Nitromethane displaces the polar chloramphenicol molecules from the active silanol groups on the silica gel and protein molecules. Nitromethane may also saturate the remaining free silanol groups on the silica gel and prevents re-adsorption of CAP molecules on the silica gel.;Methanol acts to dissociate the drug-protein complex, and keeps CAP molecules soluble in the supercritical fluid during extraction. Methanol may also prevent re-adsorption of CAP molecules on silica gel by shifting the mass transfer constant to favor the supercritical fluid rather than the silica gel. The extracted chloramphenicol was analyzed by HPLC.
机译:超临界流体具有与液体相似的溶剂化能力,但在相同温度下也具有较高的扩散系数和较低的粘度。与液体萃取相比,超临界流体具有以更快的萃取速率萃取分析物的潜力。通常,超临界流体萃取(SFE)可以提供与索氏萃取方法相当的萃取效率,但仅需30-45分钟,仅是索氏萃取所需时间的一小部分,最多可能需要16个小时;大多数SFE萃取均已完成与非极性二氧化碳。在二氧化碳中添加极性液体(例如甲醇)会增加其极性。只能添加有限量的甲醇,因为增加甲醇作为改性剂的百分比可能导致相分离和萃取效率下降。抗生素和药物的极性和分子量均很高。氯霉素(CAP)是一种分子量为323.14道尔顿的抗生素,具有极性基团(芳香族硝基,一个伯醇基和一个仲醇基,一个仲氨基和一个酮基);可将牛奶和人血清中的氯霉素截留在其上硅胶。与氯霉素竞争硅胶活性位点的改性剂可大大提高提取率。这些改性剂在提高氯霉素提取率方面的有效性取决于其结构和官能团。甲醇改性的超临界二氧化碳已用于从硅胶中提取捕获的CAP。可以将第二种改性剂(称为模拟改性剂)与甲醇一起添加。第二种改性剂的选择取决于目标分析物的化学结构。第二种改性剂应与分析物分子具有某些结构相似性,以便可以从基质中置换出吸附的分析物。研究了温度,压力,萃取时间,水百分比和改性剂对萃取效率的影响。还研究了硝基甲烷(用于从硅胶中提取氯霉素的类似改性剂)的作用。仅使用纯硅胶就证明了单独使用硝基甲烷的效果。当甲醇作为第二种改性剂时,提取效率没有变化。研究了硝基甲烷和甲醇一起作为改性剂对人血清和牛奶中CAP提取效率的影响。为了获得最大的提取效率,必须使用两种改性剂。发现可以从牛奶中提取42%的添加的CAP,并且可以一致地从人血清中定量提取CAP。已经发现,每种改性剂在提取中可能起不同的作用。硝基甲烷将极性氯霉素分子从硅胶和蛋白质分子上的活性硅烷醇基团中置换出来。硝基甲烷也可能会使硅胶上剩余的游离硅烷醇基饱和,并阻止CAP分子在硅胶上的再吸附。甲醇起着使药物-蛋白质复合物解离的作用,并使CAP分子在萃取过程中可溶于超临界流体。甲醇还可以通过改变传质常数以偏向超临界流体而不是硅胶来防止CAP分子重新吸附在硅胶上。通过HPLC分析提取的氯霉素。

著录项

  • 作者单位

    The American University.;

  • 授予单位 The American University.;
  • 学科 Chemistry Analytical.
  • 学位 Ph.D.
  • 年度 1993
  • 页码 109 p.
  • 总页数 109
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号