首页> 外文学位 >Distributed representations and nested compositional structure.
【24h】

Distributed representations and nested compositional structure.

机译:分布式表示和嵌套组成结构。

获取原文
获取原文并翻译 | 示例

摘要

Distributed representations are attractive for a number of reasons. They offer the possibility of representing concepts in a continuous space, they degrade gracefully with noise, and they can be processed in a parallel network of simple processing elements. However, the problem of representing nested structure in distributed representations has been for some time a prominent concern of both proponents and critics of connectionism (Fodor and Pylyshyn 1988; Smolensky 1990; Hinton 1990). The lack of connectionist representations for complex structure has held back progress in tackling higher-level cognitive tasks such as language understanding and reasoning.;In this thesis I review connectionist representations and propose a method for the distributed representation of nested structure, which I call "Holographic Reduced Representations" (HRRs). HRRs provide an implementation of Hinton's (1990) "reduced descriptions". HRRs use circular convolution to associate atomic items, which are represented by vectors. Arbitrary variable bindings, short sequences of various lengths, and predicates can be represented in a fixed-width vector. These representations are items in their own right, and can be used in constructing compositional structures. The noisy reconstructions extracted from convolution memories can be cleaned up by using a separate associative memory that has good reconstructive properties.;Circular convolution, which is the basic associative operator for HRRs, can be built into a recurrent neural network. The network can store and produce sequences. I show that neural network learning techniques can be used with circular convolution in order to learn representations for items and sequences.;One of the attractions of connectionist representations of compositional structures is the possibility of computing without decomposing structures. I show that it is possible to use dot-product comparisons of HRRs for nested structures to estimate the analogical similarity of the structures. This demonstrates how the surface form of connectionist representations can reflect underlying structural similarity and alignment.
机译:出于多种原因,分布式表示很有吸引力。它们提供了在连续空间中表示概念的可能性,它们因噪声而优雅地退化,并且可以在包含简单处理元素的并行网络中进行处理。然而,在分布式表示中表示嵌套结构的问题一直是连接主义的拥护者和批评者关注的焦点(Fodor and Pylyshyn 1988; Smolensky 1990; Hinton 1990)。缺乏用于复杂结构的连接主义表示形式阻碍了在解决诸如语言理解和推理等高级认知任务方面的进展。在本论文中,我回顾了连接主义表示形式,并提出了一种嵌套结构的分布式表示方法,我称之为“全息缩图表示法”(HRR)。 HRR提供了Hinton(1990)“简化描述”的实现。 HRR使用循环卷积来关联原子项,这些原子项由矢量表示。任意变量绑定,各种长度的短序列和谓词都可以表示为固定宽度的向量。这些表示形式本身就是项目,可用于构造组成结构。可以通过使用具有良好重构特性的单独的关联存储器来清理从卷积存储器中提取的嘈杂重构。循环卷积是HRR的基本关联运算符,可以内置到递归神经网络中。网络可以存储和产生序列。我展示了神经网络学习技术可以与圆形卷积一起使用,以学习项目和序列的表示形式。组合结构的连接主义表示形式的吸引力之一是无需分解结构即可进行计算。我表明,可以对嵌套结构使用HRR的点积比较来估计结构的类比相似性。这证明了连接主义表示形式的表面形式如何反映潜在的结构相似性和对齐方式。

著录项

  • 作者

    Plate, Tony Alexander.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Computer Science.
  • 学位 Ph.D.
  • 年度 1994
  • 页码 289 p.
  • 总页数 289
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号