首页> 外文学位 >Nucleation, epitaxial growth, and characterization of beta-silicon carbide thin films on silicon by rapid thermal chemical vapor deposition.
【24h】

Nucleation, epitaxial growth, and characterization of beta-silicon carbide thin films on silicon by rapid thermal chemical vapor deposition.

机译:通过快速热化学气相沉积在硅上形成β-碳化硅薄膜的成核,外延生长和表征。

获取原文
获取原文并翻译 | 示例

摘要

The principal objective of this dissertation is to study monocrystalline epitaxial SiC thin film nucleation and growth on Si by rapid thermal vapor deposition (RTCVD). In addition to the actual growth process development, this has also included the characterization of the as-grown SiC films in terms of crystal structure, morphology, chemical composition, and electrical properties, as well as the fabrication of simple SiC/Si heterojunction diodes.; The (100) Si substrate was first converted to SiC layer by carbonization at elevated temperatures in simple hydrocarbon ambients at both atmospheric and low pressures. The SiC films were evaluated by X-ray diffraction, FT-IR, ellipsometry, SEM, AFM, AES, and TEM analyses. The effects of flow rates, temperature, temperature ramp rate, and pressure were studied. The crystallinity, thickness, and morphology of SiC films were found to be a strong function of the hydrocarbon concentration in the gas stream and the growth pressure. Voids (hollow spaces) have been observed to exist in the Si substrate underneath the SiC film except for one condition: high hydrocarbon concentration in the gas stream under which an ultra-thin ({dollar}sim{dollar}10 nm) void-free single crystal SiC film is formed. High-resolution TEM analysis of this film indicated that five SiC lattice planes aligned with four Si lattice planes. Optimum conditions in terms of crystallinity are: 1300{dollar}spcirc{dollar}C, 90 sec, 25-50{dollar}spcirc{dollar}C/s temperature ramp, 13 sccm C{dollar}sb3{dollar}H{dollar}sb8{dollar}, 1.5 lpm H{dollar}sb2{dollar}. The growth rate is in the range of 0.5-1 nm/sec. Both X-ray diffraction and TEM analyses indicated that films grown under the optimum conditions were single-crystal epitaxial cubic SiC thin films. In addition, simple hydrocarbon gases such as propane, ethylene, acetylene, and methane showed similar behaviors when reacting with Si except for slight difference in reactivity.; The evolution of SiC nucleation on Si was studied by combining the surface analysis capability of SEM and AFM with the excellent ability of RTCVD to control the growth reaction process. A nucleation mechanism which has been proposed to explain the existing experimental observations consists of the following: (i) the initial nucleation density is determined by the precursor concentration in the reaction gas; (ii) the lateral and vertical growth of individual nuclei proceeds by the consumption of Si atoms around their periphery; (iii) Si voids are formed along the SiC/Si interface when nuclei grow large enough to come in contact and, thus, to restrict the supply of Si atoms.; The subsequent SiC film growth after carbonization was carried out by the addition of silane into the gas steam. The growth was optimized by varying growth temperature and Si/C ratio in the gas steam. The optimum growth conditions are: 1200{dollar}spcirc{dollar}C, Si to C ratio of 0.4 in the gas stream, and 1.5 lpm H{dollar}sb2{dollar}.; SiC films have also been grown using organosilane precursors such as diethylsilane and methylsilane. Compared to SiC film growth by silane and propane, the growth by organosilanes was achieved at lower temperatures (700-1000{dollar}spcirc{dollar}C), and resulted in a sharp, void-free interface, smooth surface morphologies, and higher growth rates in the range of 2-12 nm/sec.; Unintentionally-doped SiC films ({dollar}sim{dollar}2000A) grown on p-type Si by carbonization in C{dollar}sb3{dollar}H{dollar}sb8{dollar} ambient and by growth from methylsilane precursor have been used to fabricate SiC/Si heterojunction diodes. Ni deposited by sputtering and annealed in Ar ambient serves as the ohmic contact to SiC film. I-V and C-V were used to characterize the SiC/Si diodes. Diodes made on SiC films by carbonization in C{dollar}sb3{dollar}H{dollar}sb8{dollar} and by growth from methylsilane both showed an ideality factor of close to unity and a reverse breakdown voltage of larger than 150 v
机译:本文的主要目的是通过快速热气相沉积(RTCVD)研究单晶外延SiC薄膜在Si上的成核和生长。除了实际的生长工艺开发之外,这还包括根据晶体结构,形态,化学成分和电性能表征生长的SiC膜,以及制造简单的SiC / Si异质结二极管。 ;首先,在大气和低压下,在简单的烃类环境中,在高温下通过碳化将(100)Si衬底转变为SiC层。 SiC薄膜通过X射线衍射,FT-IR,椭圆光度法,SEM,AFM,AES和TEM分析进行了评估。研究了流速,温度,温度上升速率和压力的影响。发现SiC膜的结晶度,厚度和形态是气流中烃浓度和生长压力的强函数。观察到在以下情况下,在SiC膜下面的Si衬底中存在空隙(空心空间):一种情况是:气流中的烃浓度高,在这种情况下,超薄({sim} {dollar} 10 nm)无空隙形成单晶SiC膜。该膜的高分辨率TEM分析表明,五个SiC晶格平面与四个Si晶格平面对准。就结晶度而言,最佳条件为:1300 {dol} spcirc {dollar} C,90秒,25-50 {dollar} spcirc {dollar} C / s温度上升,13 sccm C {dollar} sb3 {dollar} H {dollar } sb8 {dollar},每小时1.5 lpm H {dollar} sb2 {dollar}。生长速率在0.5-1nm /秒的范围内。 X射线衍射和TEM分析均表明,在最佳条件下生长的薄膜为单晶外延立方SiC薄膜。另外,简单的烃类气体,如丙烷,乙烯,乙炔和甲烷,在与Si反应时表现出相似的行为,只是反应性略有不同。通过将SEM和AFM的表面分析能力与RTCVD控制生长反应过程的出色能力相结合,研究了SiC在Si上成核的演变。为解释现有的实验观察结果而提出的成核机理包括:(i)初始成核密度取决于反应气体中的前驱物浓度; (ii)单个原子核的横向和垂直生长是通过消耗其周围的Si原子来实现的; (iii)当核长到足以接触时,沿着SiC / Si界面形成Si空隙,从而限制了Si原子的供应。碳化后,随后的SiC膜生长是通过将硅烷添加到气体蒸汽中进行的。通过改变气体蒸汽中的生长温度和Si / C比来优化生长。最佳的生长条件为:1200sp(美元)C,气流中Si与C的比为0.4,H(美元)sb 2(美元)为1.5 lpm。 SiC薄膜也已使用有机硅烷前体(例如二乙基硅烷和甲基硅烷)生长。与通过硅烷和丙烷生长的SiC薄膜相比,通过有机硅烷的生长在较低的温度(700-1000 {sp} {dol}} C下得以实现,并导致了清晰,无空隙的界面,光滑的表面形貌以及更高的温度生长速度在2-12 nm / sec的范围内;通过在C {dollar} sb3 {dollar} H {dollar} sb8 {dollar}的环境下碳化以及从甲基硅烷前体的生长,在p型Si上生长了无意掺杂的SiC薄膜(dollar} sim {dollar} 2000A)。制造SiC / Si异质结二极管。通过溅射沉积并在Ar环境中退火的Ni用作与SiC薄膜的欧姆接触。 I-V和C-V用于表征SiC / Si二极管。通过在C {dollar} sb3 {dollar} H {dollar} sb8 {dollar}中碳化和由甲基硅烷生长在SiC薄膜上制成的二极管都显示出接近于1的理想因子和大于150 v的反向击穿电压

著录项

  • 作者

    Li, Jiping.;

  • 作者单位

    University of Cincinnati.;

  • 授予单位 University of Cincinnati.;
  • 学科 Engineering Electronics and Electrical.; Engineering Materials Science.; Physics Electricity and Magnetism.
  • 学位 Ph.D.
  • 年度 1994
  • 页码 154 p.
  • 总页数 154
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;工程材料学;电磁学、电动力学;
  • 关键词

  • 入库时间 2022-08-17 11:49:46

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号