首页> 外文学位 >Mesoscopic transport and quantum chaos in ballistic quantum dots.
【24h】

Mesoscopic transport and quantum chaos in ballistic quantum dots.

机译:弹道量子点中的介观输运和量子混沌。

获取原文
获取原文并翻译 | 示例

摘要

This thesis investigates electronic transport in the ballistic, phase-coherent regime. Stadium-shaped quantum dots with quantum point contact leads are fabricated on a GaAs/AlGaAs heterostructure with a size (0.6 {dollar}mu{dollar}m {dollar}times{dollar} 1.3 {dollar}mu{dollar}m) that is smaller than the measured mean free path for impurity scattering {dollar}ell{dollar} = 3.8 {dollar}mu{dollar}m and the measured phase coherence length {dollar}ellsbphi{dollar} = 9.5 {dollar}mu{dollar}m at T = 1.5 K. Magnetotransport measurements at T = 1.5 K reveal a prominent resistance peak centered at zero magnetic field and reproducible, aperiodic conductance fluctuations at finite field. A systematic series of experiments demonstrates that coherent backscattering is the origin of the zero-field resistance peak and that this effect is distinct from conductance fluctuations at finite fields. Coherent backscattering results from constructive interference between pairs of time-reversed electron trajectories scattered from the walls of the device, analogous to weak localization in diffusive systems.; The importance of device shape in determining transport properties in the ballistic limit is investigated by measuring the T = 0.43 K magnetotransport of pairs of quantum dots fabricated in the shape of a circle and a pacman, which is a circle with a central bar. The characteristic magnetic field for both coherent backscattering (B{dollar}sb{lcub}rm c{rcub}{dollar}) and conductance fluctuations (B{dollar}sbalpha{dollar}) are strongly shape-dependent: both are larger by a factor {dollar}geq{dollar}3 in the pacman. Comparison of large and small devices of nominally identical shape shows that characteristic trajectory areas are proportional to the device area. By verifying the relationship B{dollar}sbalphacong 2 rm Bsb{lcub}c{rcub}{dollar}, we show that coherent backscattering and conductance fluctuations are independent yet complementary measures of the characteristic trajectory area.; We measure the detailed dependence of coherent backscattering, with amplitude {dollar}Deltarm Gsb0{dollar} and field scale B{dollar}sb{lcub}rm c{rcub}{dollar}, and conductance fluctuations, with amplitude {dollar}deltarm Gsb{lcub}rms{rcub}{dollar} and field scale B{dollar}sbalpha{dollar}, on the overall dot conductance G{dollar}sb{lcub}rm dot{rcub}{dollar} in the range e{dollar}sp2{dollar}/h to 6 e{dollar}sp2{dollar}/h. We find a parallel between the behavior of coherent backscattering and conductance fluctuations: at T = 1.5 K, both amplitudes {dollar}Deltarm Gsb0{dollar} and {dollar}deltarm Gsb{lcub}rms{rcub}{dollar} rise monotonically versus G{dollar}sb{lcub}rm dot{rcub}{dollar} without showing signs of leveling-off, and both field scales B{dollar}sb{lcub}rm c{rcub}{dollar} and B{dollar}sbalpha{dollar} are roughly constant versus G{dollar}sb{lcub}rm dot{rcub}{dollar}. Semiclassical theory and random matrix theory are unable to account for these results. Below T = 1.5 K, the amplitude of conductance fluctuations {dollar}deltarm Gsb{lcub}rms{rcub}{dollar} is observed to grow more rapidly with decreasing temperature than the size of coherent backscattering {dollar}Deltarm Gsb0{dollar}, suggesting that {dollar}deltarm Gsb{lcub}rms{rcub}{dollar} is attenuated by thermal averaging but that {dollar}Deltarm Gsb0{dollar} is not. Coherent backscattering becomes strikingly sensitive to gate voltage below T {dollar}approx{dollar} 200 mK. This temperature agrees with the average spacing of energy levels in the quantum dot {dollar}Delta/rm ksb{lcub}B{rcub}{dollar} = 160 mK.
机译:本文研究了弹道相干状态下的电子传输。具有量子点接触引线的体育场形状的量子点是在GaAs / AlGaAs异质结构上制造的,该异质结构的尺寸为(0.6 {μm}μm{$ m}×{1.33μm)小于测得的杂质平均散射自由度{dolll} ell {dollar} = 3.8 {dollar} mu {dollar} m以及测得的相干长度{dollar} ellsbphi {dollar} = 9.5 {dollar} mu {dollar} m在T = 1.5 K时。在T = 1.5 K时的磁传输测量显示出一个显着的电阻峰,该峰集中在零磁场处,并且在有限磁场中具有可再现的非周期性电导波动。系统的一系列实验表明,相干反向散射是零场电阻峰值的起源,并且这种影响与有限场处的电导波动不同。相干反向散射是由从器件壁上散射的成对的时间反转电子轨迹之间的相长干涉造成的,这类似于扩散系统中的弱定位。通过测量以圆和pacman形式制造的成对的量子点对的T = 0.43 K磁输运,研究了器件形状在确定弹道极限中的传输特性方面的重要性。相干后向散射(B {dollar} sb {lcub} rm c {rcub} {dollar})和电导涨落(B {dollar} sbalpha {dollar})的特征磁场都与形状密切相关:两者都大一个pacman中的{dollar} geq {dollar} 3因子。比较名义上相同形状的大型和小型设备,可以看出特征轨迹面积与设备面积成正比。通过验证B {dollar} sbalphacong 2 rm Bsb {lcub} c {rcub} {dollar}的关系,我们表明相干的反向散射和电导波动是特征轨迹区域的独立但互补的度量。我们测量了幅度为{dollar} Deltarm Gsb0 {dollar}和场标B {dollar} sb {lcub} rm c {rcub} {dollar}的相干反向散射的详细相关性,以及幅度为{dollar} deltarm Gsb的电导波动{lcub} rms {rcub} {dollar}和场标B {dollar} sbalpha {dollar},在e {dollar}范围内的总点电导G {dollar} sb {lcub} rm dot {rcub} {dollar} sp2 {dollar} / h到6 e {dollar} sp2 {dollar} / h。我们发现相干反向散射的行为与电导波动之间存在相似的关系:在T = 1.5 K时,两个幅度{dollar} Deltarm Gsb0 {dollar}和{dollardeltarm Gsb {lcub} rms {rcub} {dollar}都相对于G单调上升。 {dollar} sb {lcub} rm dot {rcub} {dollar}而没有显示出平稳的迹象,并且两个域标尺B {dollar} sb {lcub} rm c {rcub} {dollar}和B {dollar} sbalpha {美元}与G {dollar} sb {lcub} rm点{rcub} {dollar}大致相同。半经典理论和随机矩阵理论无法解释这些结果。在T = 1.5 K以下,观察到电导波动的幅度{dollar} deltarm Gsb {lcub} rms {rcub} {dollar}随着温度的降低比相干反向散射{dollar} Deltarm Gsb0 {dollar}的大小增长更快,这表明{dollar} deltarm Gsb {lcub} rms {rcub} {dollar}被热平均衰减,而{dollar} Deltarm Gsb0 {dollar}则没有。相干反向散射对低于200 mK T {美元}的栅极电压变得非常敏感。该温度与量子点{美元} Delta / rm ksb {lcub} B {rcub} {美元}中的能级平均间距= 160 mK一致。

著录项

  • 作者

    Berry, Michael James, II.;

  • 作者单位

    Harvard University.;

  • 授予单位 Harvard University.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 1994
  • 页码 177 p.
  • 总页数 177
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 O49;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号