首页> 外文学位 >Force and impact control for robot manipulators with unknown dynamics and disturbances.
【24h】

Force and impact control for robot manipulators with unknown dynamics and disturbances.

机译:具有未知动态和干扰的机器人操纵器的力和冲击控制。

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation, three problems have been primarily studied in the area of robot control: (1) characterization of robot nonlinear dynamics, (2) force control of robot manipulators with unknown dynamics and disturbances, and (3) nonlinear impact force control.; In order to identify the robot control problems, we studied the effects of plant dynamics, focusing on robot joint dynamics such as joint flexibility and friction. Extensive experimental studies have been done on robot transmissions. The experiments have included: transmission linearity, backlash, static and dynamic friction, and forward efficiency. In order to understand the influence of transmission properties on overall system performance, a comparative evaluation was performed on three competing transmission types: worm-gear drive, cone-drive and traction drive transmission. The results of experiments performed on worm-gear drive validated a load-dependent friction model, which was derived for feed-forward friction compensation in feedback control.; With understanding of how transmission nonlinearities influence closed-loop and controlled behavior, a new controller has been developed by combining Natural Admittance Control with Time Delay Control. The proposed nonlinear controller is not model based control. The only system parameter that must be estimated is inertia, rendering it easy to implement. It rejects unmodeled dynamics, nonlinearities, and disturbances without a difficult characterization process while preserving desired dynamics. The simulation results demonstrate not only good external disturbance rejection, robustness to parameter changes and insensitivity to noise, but also demonstrate good trajectory tracking providing good rejection of internal Coulomb friction.; For stabilization of a robot manipulator upon collision with a stiff environment, we proposed a novel impact force control strategy which is developed based on the observation of human interactive behavior. It uses a robust natural admittance/time-delay control with an added negative force feedback to absorb impact force and stabilize the system. During the impact phase, this control input alternates with zero control input when no environment force is sensed. Simulation results show that this simple bang-bang control approach produces a stable interaction with a very stiff environment and its performance is comparable to the other existing impact force control techniques.
机译:本文主要研究了机器人控制领域的三个问题:(1)机器人非线性动力学的表征;(2)动力学和干扰未知的机器人操纵器的力控制;(3)非线性冲击力控制。为了确定机器人控制问题,我们研究了工厂动力学的影响,重点研究了机器人关节动力学,例如关节的柔韧性和摩擦力。已经对机器人传动装置进行了广泛的实验研究。实验包括:传输线性,齿隙,静态和动态摩擦以及前进效率。为了了解传动特性对整体系统性能的影响,对三种竞争的传动类型进行了比较评估:蜗轮传动,圆锥传动和牵引传动。在蜗轮传动装置上进行的实验结果验证了负载相关的摩擦模型,该模型可用于反馈控制中的前馈摩擦补偿。在了解了传输非线性如何影响闭环和受控行为之后,通过将自然导纳控制与时延控制相结合,开发了一种新型控制器。所提出的非线性控制器不是基于模型的控制。必须估计的唯一系统参数是惯性,使其易于实现。它在保留所需动态特性的同时,无需进行困难的表征过程即可拒绝未建模的动态特性,非线性特性和干扰。仿真结果不仅证明了良好的外部干扰抑制能力,对参数变化的鲁棒性以及对噪声的不敏感性,而且还证明了良好的轨迹跟踪技术可以很好地抑制内部库仑摩擦。为了在与硬环境碰撞时稳定机器人操纵器,我们提出了一种新颖的冲击力控制策略,该策略是基于对人类交互行为的观察而开发的。它使用了强大的自然导纳/延时控制以及附加的负力反馈来吸收冲击力并稳定系统。在撞击阶段,当未感测到环境力时,此控制输入与零控制输入交替。仿真结果表明,这种简单的“砰砰”控制方法可以在非常恶劣的环境中产生稳定的交互作用,其性能可与其他现有的冲击力控制技术相媲美。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号