首页> 外文学位 >Non-stationary transport models and their application in gallium arsenide MESFETs.
【24h】

Non-stationary transport models and their application in gallium arsenide MESFETs.

机译:非平稳传输模型及其在砷化镓MESFET中的应用。

获取原文
获取原文并翻译 | 示例

摘要

The study of carrier transport in semiconductors requires solving the Boltzmann transport equation which yields a distribution function that describes the relevant transport properties of carriers. Based on the distribution function, macroscopic transport models can be extracted to take into account non-stationary phenomena which become important at short time scales and small spatial dimensions. By coupling a macroscopic transport model with other relevant equations, a device simulator is realized which allows the study of the terminal behavior of devices. With appropriate, physically motivated assumptions, a CAD-oriented device simulator can be developed which is computationally efficient and physically accurate.;The Boltzmann transport equation is solved for GaAs using a path integral method originally proposed by Rees. In order to simulate high field phenomena, a multi-valley, parabolic band model is assumed. An iterative scheme is implemented to obtain true transient behavior. Transient simulations are performed to reveal non-stationary transport in the time domain. The iterative scheme is simulated to steady-state in order to obtain steady-state transport parameters. Steady-state results in each valley are also obtained from the transient Boltzmann solver. Results obtained from the path integral method are in excellent agreement with results from Monte Carlo simulations. However, unlike the Monte Carlo method, in which it is difficult to tabulate the distribution function, the path integral method yields the distribution function directly. Steady-state results reveal significant anisotropy of the distribution in the Gamma valley; the Lambda valley distribution remains fairly isotropic even at high fields.;Based on the distribution function, macroscopic transport models are obtained using the balance equations method. Transport parameters for the macroscopic models are obtained from the aforementioned Boltzmann solver. The drift-diffusion (DD) model is obtained as a special case of the balance equations. Although drift-diffusion is a purely local model, retaining an additional term in the balance equation derivation results in the augmented drift-diffusion (ADD) model. The ADD contains a transport parameter (length coefficient) which accounts for some non-local phenomena. The length coefficient obtained in this work is in reasonable agreement with reported results. The drifted-Maxwellian (DM) non-stationary model is also developed and discussed.;A CAD-oriented device simulator is implemented for GaAs MESFETs using a quasi-two-dimensional (Q-2D) scheme. The Q-2D scheme exploits the behavior of sub-micron GaAs MESFETs to recast the relevant equations in one dimension while retaining some two-dimensional effects. The Q-2D approximation represents a compromise between physical accuracy and computational efficiency. Different transport models are coupled with the Q-2D method to assess their utility in actual devices. Results show that the DD model underestimates the drain current for sub-micron gate lengths. The ADD transport model, with proper choice of length coefficient, yields results comparable to those obtained from a more sophisticated DM model. The ADD approach, because of its inherent simplicity, is computationally very efficient while retaining the effects of non-stationary transport. The ADD model is subsequently used to compare modeled and measured results. Reasonable agreement is obtained given the lack of device details which are required for the device simulator, and the inherent approximations of the Q-2D scheme.
机译:对半导体中载流子传输的研究需要求解玻耳兹曼输运方程,该方程产生一个描述载流子相关输运特性的分布函数。基于分布函数,可以提取宏观运输模型以考虑非平稳现象,这些现象在短时间尺度和较小空间尺度上变得非常重要。通过将宏观传输模型与其他相关方程式耦合,可以实现设备模拟器,从而可以研究设备的终端行为。有了适当的,基于物理的假设,就可以开发出一种计算效率高,物理上精确的面向CAD的设备模拟器。使用Rees最初提出的路径积分方法求解GaAs的玻尔兹曼输运方程。为了模拟高场现象,假设采用多谷抛物线模型。实现迭代方案以获得真实的瞬态行为。进行瞬态仿真以揭示时域中的非平稳传输。为了获得稳态传输参数,将迭代方案模拟为稳态。还可以从瞬态Boltzmann求解器获得每个波谷的稳态结果。从路径积分法获得的结果与蒙特卡洛模拟的结果非常吻合。但是,与蒙特卡洛方法不同,在蒙特卡洛方法中很难对分布函数进行制表,路径积分法可以直接产生分布函数。稳态结果表明,伽玛河谷的分布具有明显的各向异性;甚至在高场下,Lambda谷的分布也保持各向同性。基于分布函数,使用平衡方程法获得宏观输运模型。宏观模型的传输参数是从上述的Boltzmann求解器获得的。作为平衡方程的特例,获得了漂移扩散(DD)模型。尽管漂移扩散是纯粹的局部模型,但在平衡方程推导中保留其他项会导致增强漂移扩散(ADD)模型。 ADD包含一个传输参数(长度系数),该参数解释了一些非局部现象。在这项工作中获得的长度系数与报告的结果合理吻合。还开发并讨论了漂移的Maxwellian(DM)平稳模型。;使用准二维(Q-2D)方案为GaAs MESFET实现了面向CAD的器件模拟器。 Q-2D方案利用亚微米GaAs MESFET的行为在保持一维二维效果的同时,在一维中重铸了相关方程。 Q-2D近似值表示物理精度和计算效率之间的折衷。不同的运输模型与Q-2D方法结合使用,以评估其在实际设备中的效用。结果表明,对于亚微米栅极长度,DD模型低估了漏极电流。通过适当选择长度系数,ADD传输模型的结果可与从更复杂的DM模型获得的结果相媲美。 ADD方法由于其固有的简单性,在保持非平稳传输的影响的同时,在计算上非常有效。随后使用ADD模型比较建模结果和测量结果。鉴于缺少设备模拟器所需的设备详细信息以及Q-2D方案的内在近似,因此获得了合理的协议。

著录项

  • 作者

    Jere, Jayant Narayan.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 1995
  • 页码 181 p.
  • 总页数 181
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号