首页> 外文学位 >The identification problem of reconstructability analysis: A general method for estimation and optimal resolution of local inconsistency.
【24h】

The identification problem of reconstructability analysis: A general method for estimation and optimal resolution of local inconsistency.

机译:可重构性分析的识别问题:一种估计和最佳解决局部不一致问题的通用方法。

获取原文
获取原文并翻译 | 示例

摘要

Reconstructability Analysis is a field within systems theory that studies relationships between systems and their subsystems. The Identification Problem (IP) of reconstructability analysis is concerned with estimating the distribution of states of an overall system, given observations on its subsystems. For discrete probabilistic systems, the conventional IP solution is the probability distribution having maximum uncertainty (Shannon entropy), subject to the constraint that projections of this system match the observed subsystems.;A general solution to IP in the presence of local inconsistency is provided in this dissertation. The methodology involves, first, estimation of a locally consistent set of subsystems from the data, then identification of the overall system from this locally consistent set using the conventional maximum uncertainty approach. The first step is the main contribution of this dissertation.;Local inconsistencies are viewed as arising from sampling or measurement error. Under this assumption, there exists a "true" set of locally consistent subsystems, of which the data are an imperfectly observed realization. The problem lies in estimating the "true" set. In this research, the "best" estimate is specified as that set of subsystems for which a discrimination information statistic from the data is globally minimized, subject to the constraint of local consistency. Solution of this minimization leads to two computational steps which are iterated on the data until a stopping criterion is reached.;This method is applied to estimation of the spatial distribution of households, by socio-economic characteristics, in order to estimate trip generation for a transportation simulation model. Locally inconsistent data are common in this field, and systemic information is therefore ignored due to lack of methods for resolving local inconsistencies. The application shows that resolution of local inconsistencies is feasible for very large problems involving thousands of states; and that simulation results are significantly improved when information in the overall system is utilized.;In practice, observed subsystems often exhibit "local inconsistency," characterized by inequality of marginal distributions that are common to two or more subsystems. An overall system cannot be identified from a locally inconsistent data set because the feasible region for the constrained uncertainty optimization is empty.
机译:可重构性分析是系统理论中的一个领域,用于研究系统及其子系统之间的关系。鉴于对子系统的观察,可重构性分析的识别问题(IP)与估计整个系统的状态分布有关。对于离散概率系统,常规IP解决方案是具有最大不确定性(香农熵)的概率分布,但要受该系统的投影与观测子系统匹配的约束的约束。;在存在局部不一致的情况下,提供了IP的一般解决方案本论文。该方法包括首先从数据中估计子系统的局部一致集合,然后使用常规的最大不确定性方法从该局部一致集合中识别整个系统。第一步是本论文的主要贡献。局部不一致性被认为是由采样或测量误差引起的。在这种假设下,存在一组“真实的”局部一致的子系统,其中的数据是不完美观察到的实现。问题在于估计“真实”集合。在这项研究中,“最佳”估计被指定为子系统的集合,在该集合中,受局部一致性约束的情况下,来自数据的判别信息统计信息被全局最小化。这种最小化的解决方案导致对数据重复执行两个计算步骤,直到达到停止标准为止。该方法通过社会经济特征应用于估计家庭的空间分布,以便估计出行的出行运输模拟模型。本地不一致的数据在该领域中很常见,由于缺乏解决本地不一致的方法,因此系统信息被忽略。该应用程序表明,对于涉及数千个州的非常大的问题,解决本地不一致问题是可行的。在实践中,观察到的子系统经常表现出“局部不一致”,其特征是两个或多个子系统共有的边际分布不均。无法从本地不一致的数据集中识别整个系统,因为约束不确定性优化的可行区域为空。

著录项

  • 作者

    Anderson, Douglas Ray.;

  • 作者单位

    Portland State University.;

  • 授予单位 Portland State University.;
  • 学科 Systems science.;Statistics.
  • 学位 Ph.D.
  • 年度 1996
  • 页码 222 p.
  • 总页数 222
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号