首页> 外文学位 >Molecular modelling of voltage-gated potassium, sodium and calcium channels complexed with metal ions and small-molecule ligands.
【24h】

Molecular modelling of voltage-gated potassium, sodium and calcium channels complexed with metal ions and small-molecule ligands.

机译:与金属离子和小分子配体络合的电压门控钾,钠和钙通道的分子模型。

获取原文
获取原文并翻译 | 示例

摘要

Voltage-gated potassium, sodium, and calcium channels play fundamental roles in cell physiology. They are targets for numerous drugs that are used to treat pain, cardiovascular, autoimmune, and other disorders. Atomic-resolution structures of ion channels and their complexes with ligands are necessary to understand the mechanisms of drug action of ligands. Electrophysiological and crystallographic studies have advanced our understanding of ion channels, but the binding sites, access pathways, and the mechanism of state-dependent action of medically important drugs remain unclear. During my graduate studies, I investigated the structure-function relationships of voltage-gated ion channels and their complexes with drugs by using energy calculations with experimental constraints. My work has helped resolve controversial interpretations of experiments addressing structural similarity between prokaryotic and eukaryotic K + channels. Our model of the open Shaker K + channel was confirmed by the later published X-ray structure of Kv1.2. Our Cav2.1 model reinterprets substituted-cysteine accessibility experiments, validates the proposed alignment between K + and Ca2+ channels, and suggests a similar folding of voltage-gated K+ and Ca2+ channels. These results allowed me to model eukaryotic K+ and Na+ channels in the resting and open/slow-inactivated states, and to predict the binding sites of local anaesthetics, correolide, and chromanol 293B. In these studies, we proposed the involvement of metal ions in the binding of nucleophilic drugs and suggested that the deficiency of permeating ion(s) in the outer pore of the slow-inactivated channels stabilizes the ligands. Simultaneous studies of K+, Na+, and Ca2+ channels were advantageous because the information acquired from one family of ion channels was relevant to other families. My studies contributed to the growing knowledge about ion channels by offering structural information and suggesting mechanisms for the action of drugs.
机译:电压门控的钾,钠和钙通道在细胞生理中起基本作用。它们是用于治疗疼痛,心血管疾病,自身免疫疾病和其他疾病的众多药物的目标。离子通道的原子分辨结构及其与配体的配合物对于理解配体的药物作用机理是必需的。电生理和晶体学研究使我们对离子通道有了更深入的了解,但是结合位点,通路和医学上重要药物的状态依赖性作用机制仍不清楚。在我的研究生学习期间,我通过使用具有实验约束的能量计算研究了电压门控离子通道及其与药物的复合物的结构-功能关系。我的工作帮助解决了有关原核和真核K +通道之间结构相似性的实验的有争议的解释。后来发布的Kv1.2 X射线结构证实了我们开放的Shaker K +通道模型。我们的Cav2.1模型重新解释了取代的半胱氨酸可及性实验,验证了K +和Ca2 +通道之间拟议的对齐方式,并提出了电压门控K +和Ca2 +通道的类似折叠。这些结果使我能够在静止和开放/缓慢灭活状态下对真核生物K +和Na +通道进行建模,并预测局部麻醉剂,correolide和苯并二氢吡喃酚293B的结合位点。在这些研究中,我们提出了金属离子参与亲核药物的结合,并提出慢速灭活通道外孔中渗透离子的缺乏使配体稳定。同时研究K +,Na +和Ca2 +通道是有利的,因为从一个离子通道家族获得的信息与其他离子通道家族有关。我的研究通过提供结构信息和建议药物作用机制,为有关离子通道的不断发展的知识做出了贡献。

著录项

  • 作者

    Bruhova, Iva.;

  • 作者单位

    McMaster University (Canada).;

  • 授予单位 McMaster University (Canada).;
  • 学科 Biology Physiology.;Biophysics General.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 139 p.
  • 总页数 139
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号