首页> 外文学位 >Process development of fuel ethanol production from lignocellulosic sugars using genetically engineered yeasts.
【24h】

Process development of fuel ethanol production from lignocellulosic sugars using genetically engineered yeasts.

机译:使用基因工程酵母从木质纤维素糖生产燃料乙醇的工艺开发。

获取原文
获取原文并翻译 | 示例

摘要

Glucose and xylose are the major fermentable substrates present in lignocellulosic biomass, a potential feedstock for the commercial fuel ethanol production. Past research in this area has indicated that xylose fermentation and ethanol tolerance of the fermenting microorganism are major bottlenecks in the design of an economical fuel ethanol production process. The development of xylose fermenting yeasts by genetic engineering has potentially overcome the bottleneck of xylose conversion to ethanol. This dissertation deals with the fermentation process development of fuel ethanol production using a genetically engineered Saccharomyces yeast 1400 (pLNH33).; Experiments indicate that along with a high ethanol tolerance of 13.6% (w/v), this yeast also ferments glucose and xylose simultaneously to ethanol. Kinetic studies indicate that ethanol is a major inhibitor in the process, and inhibits xylose fermentation more severely than glucose fermentation. In order to overcome the ethanol inhibition, simultaneous fermentation and ethanol recovery using {dollar}rm COsb2{dollar} stripping was performed in an energy efficient air-lift loop fermentor with side-arm (ALSA). This integrated process configuration significantly improves the ethanol productivity and yield from glucose and xylose. Acetic acid was also determined to be a fermentation inhibitor. An alkaline pretreatment method, that removes acetate and lignin from biomass, was applied for efficient ethanol production from corn cob (a model feedstock).; Genetic stability of the recombinant yeast was investigated for process scale up. These studies indicate that xylose can be used as a selection pressure to maintain the cell in the recombinant state. This avoids the use of expensive antibiotics in the production process. On the other hand, fermentation media containing glucose was found to be non-selective. Results from kinetic studies were used for estimating parameters of an unstructured fermentation model that incorporates the effects of substrate inhibition, product inhibition, plasmid stability and inoculum size. Good agreements were obtained between the model predicted results and experimental data.; Fermentation process monitoring was accomplished by using membrane introduction mass spectrometry (MIMS) coupled with flow injection analysis (FIA). An automated on-line monitoring and feedback control system was developed for rapid determination and control of the fermentation variables.
机译:葡萄糖和木糖是木质纤维素生物质中存在的主要可发酵底物,木质纤维素生物质是商业燃料乙醇生产的潜在原料。该领域过去的研究表明,木糖发酵和发酵微生物对乙醇的耐受性是设计经济燃料乙醇生产工艺的主要瓶颈。通过基因工程开发木糖发酵酵母可能克服了木糖转化为乙醇的瓶颈。本论文涉及使用基因工程酿酒酵母1400(pLNH33)生产燃料乙醇的发酵过程。实验表明,该酵母除了具有13.6%(w / v)的高乙醇耐受性外,还将葡萄糖和木糖同时发酵为乙醇。动力学研究表明,乙醇是该过程中的主要抑制剂,比葡萄糖发酵对木糖发酵的抑制作用更为严重。为了克服对乙醇的抑制作用,在具有侧臂(ALSA)的高能效气举式发酵罐中使用{rm} rm COsb2 {dollar}汽提同时发酵和回收乙醇。这种集成的工艺配置显着提高了乙醇的生产率以及葡萄糖和木糖的产率。乙酸也被确定为发酵抑制剂。碱性预处理方法可从生物质中除去乙酸盐和木质素,用于从玉米芯(模型原料)中高效生产乙醇。研究了重组酵母的遗传稳定性以扩大工艺规模。这些研究表明木糖可以用作选择压力以维持细胞处于重组状态。这避免了在生产过程中使用昂贵的抗生素。另一方面,发现含有葡萄糖的发酵培养基是非选择性的。动力学研究的结果用于估计非结构化发酵模型的参数,该模型结合了底物抑制,产物抑制,质粒稳定性和接种量的影响。在模型的预测结果和实验数据之间取得了良好的一致性。发酵过程监控是通过使用膜引入质谱(MIMS)和流动注射分析(FIA)来完成的。开发了一种自动化的在线监测和反馈控制系统,用于快速确定和控制发酵变量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号