首页> 外文学位 >Hyperspectral remote sensing data analysis for characterizing land surface conditions.
【24h】

Hyperspectral remote sensing data analysis for characterizing land surface conditions.

机译:高光谱遥感数据分析,用于表征地面状况。

获取原文
获取原文并翻译 | 示例

摘要

The characterization of land surface conditions such as senescent plant materials, soils, green vegetation, and water bodies is essential information for understanding global change. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) provides more detailed information about materials having specific narrow absorption features and possibilities for detecting very subtle variations than can be obtained from the broad bands of current sensors systems. This research was designed to assess the potential use of hyperspectral remote sensing data for characterizing soil surface conditions, particularly for crop residues and soils. Analytical tools used included the linear mixture model, block kriging, fuzzy c-means clustering, fractal analysis, and the adjustment for atmospheric effects with the ATmosphere REMoval (ATREM) program. To achieve this primary objective, several models and techniques were used for analyzing hyperspectral data to improve the capability to detect and classify crop residues and quantity and quality of variability in soil patterns. Several simulation studies were also implemented to test the procedures used for this study. The results from this study illustrate the usefulness of hyperspectral data for the classification of crop residue using the near infrared bands. Results also show the need for improvement of radiometric resolution of the system. The linear mixture model can be used for reducing the dimensionality and noise effects for the analysis of hyperspectral data. Detailed soil patterns derived from the hyperspectral imagery were well represented using the block kriging interpolation and fuzzy c-means clustering analyses. Fractal analysis indicates that the spatial resolution of AVIRIS is not sufficient for representing the surface roughness of crop residue. Consequently, the future of hyperspectral remote sensing may be very promising for deriving important information about land surface conditions with improved radiometric and spatial resolution.
机译:表征诸如衰老植物材料,土壤,绿色植被和水体之类的地表条件是了解全球变化的重要信息。机载可见/红外成像光谱仪(AVIRIS)提供了有关具有特定窄吸收特征的材料以及比从当前传感器系统的宽带获得的更细微变化的可能性的更详细信息。这项研究旨在评估高光谱遥感数据在表征土壤表面状况(尤其是作物残留物和土壤)方面的潜在用途。所使用的分析工具包括线性混合模型,块克里金法,模糊c均值聚类,分形分析以及使用ATmosphere REMoval(ATREM)程序对大气影响进行调整。为了实现这一主要目标,使用了几种模型和技术来分析高光谱数据,以提高检测和分类农作物残留物的能力以及土壤模式变异的数量和质量。还进行了一些模拟研究,以测试用于此研究的程序。这项研究的结果表明,使用近红外波段的高光谱数据对农作物残留物的分类很有用。结果还表明需要改进系统的辐射分辨率。线性混合模型可用于减少高光谱数据分析的维数和噪声影响。使用块克里格插值法和模糊c均值聚类分析可以很好地表示从高光谱影像中得出的详细土壤模式。分形分析表明,AVIRIS的空间分辨率不足以代表农作物残渣的表面粗糙度。因此,高光谱遥感的未来对于以改进的辐射度和空间分辨率获得有关陆地表面状况的重要信息可能非常有前途。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号