首页> 外文学位 >Magnetoresistance and magnetodynamics in thin-film magnetic heterostructures.
【24h】

Magnetoresistance and magnetodynamics in thin-film magnetic heterostructures.

机译:薄膜磁异质结构中的磁阻和磁动力学。

获取原文
获取原文并翻译 | 示例

摘要

Current information technology relies heavily on magnetism. Gaining a deeper understanding of magnetism, and in particular spin dynamics, is important to today's quickly evolving technology. In this thesis, two separate studies have been conducted to help aid in the study of spin dynamics. The first project explores giant magnetoresistive (GMR) devices. These devices are presumed to be made of materials that are radiation hard with respect to both photons and particles, potentially increasing their utility for nuclear energy and space based applications. However, to date there are few detailed studies of magnetism and GMR devices in hard radiation environments. This project utilizes the facilities at The Ohio State University Nuclear Reactor Laboratory to study the effects of gamma ray and neutron irradiation on GMR samples. The structure used in this experiment is a standard GMR trilayer consisting of a thin, non-magnetic layer placed between thin ferromagnetic layers, with one of the two magnetic layers in contact with an exchange biased antiferromagnet (Py/Cu/Py/FeMn/Ge). To study the effects of radiation three types of magnetic measurements, vibrating sample magnetometery (VSM), magnetoresistance (MR), and magneto-optical Kerr effect (MOKE), are taken and correlated pre and post gamma radiation. We present characterization of the devices pre and post gamma irradiation for multiple device geometries and radiation doses up to 50 Mrad for gamma rays and a minimum fast flux (En>0.5MeV) of 4.2E12 nv for neutrons, both of which are well above the failure threshold for semiconducting devices. The second study that was done in this thesis uses current-induced magnetodynamics in giant magnetoresistive (GMR) trilayers. These devices promise a novel platform for microwave electronics. One of the keys to developing this potential has been the development of nanoscale fabrication techniques, typically resulting in either nanopillar or point-contact geometries. As a result, a considerable technical barrier to further progress is the fidelity of current nanoscale patterning techniques. In an effort to address this challenge, we present the results of development efforts aimed at fabricating prototype point-contact spin torque oscillator (PC-STO) structures with a focused ion beam (FIB). The flexibility of FIB-based nanofabrication allows in situ cross sectional imaging of contact structure, and these results are correlated with DC magnetotransport. This fabrication approach enables the rapid generation of structures in arbitrary geometries, and in conjunction with cross-sectional imaging promises increased control of device to device variation and the development of novel PC-STO structures.
机译:当前的信息技术严重依赖于磁性。深入了解磁力,尤其是自旋动力学,对于当今快速发展的技术很重要。在本文中,进行了两项单独的研究,以帮助研究自旋动力学。第一个项目探索巨型磁阻(GMR)器件。假定这些设备由对光子和粒子都具有抗辐射性的材料制成,从而有可能增加其在核能和太空应用中的效用。但是,迄今为止,在硬辐射环境中对磁性和GMR设备的详细研究很少。该项目利用俄亥俄州立大学核反应堆实验室的设施来研究伽马射线和中子辐照对GMR样品的影响。本实验中使用的结构是标准GMR三层,由三层铁磁性薄层之间的非磁性薄层组成,两层磁性层之一与交换偏置反铁磁体(Py / Cu / Py / FeMn / Ge )。为了研究辐射的影响,对三种类型的磁测量进行了测量,分别是振动样品磁强计(VSM),磁阻(MR)和磁光克尔效应(MOKE),并将它们与伽马射线辐射前后进行关联。我们对多种几何形状的装置进行了伽玛射线辐照前后的表征,对于伽玛射线,辐照剂量高达50 Mrad,对于中子,其最小快速通量(En> 0.5MeV)为4.2E12 nv,两者均远高于半导体器件的故障阈值。本文完成的第二项研究使用了巨磁阻(GMR)三层中的电流感应磁动力学。这些设备有望为微波电子技术提供一个新颖的平台。开发这种潜力的关键之一是开发纳米级制造技术,通常会产生纳米柱或点接触几何形状。结果,当前进展的相当大的技术障碍是当前的纳米级图案化技术的保真度。为了解决这一挑战,我们提出了开发工作的结果,这些工作旨在制造具有聚焦离子束(FIB)的原型点接触旋转转矩振荡器(PC-STO)结构。基于FIB的纳米加工的灵活性允许对接触结构进行原位截面成像,并且这些结果与DC磁传输相关。这种制造方法能够快速生成任意几何形状的结构,并且与横截面成像相结合,有望增强对器件之间变化的控制,并开发出新颖的PC-STO结构。

著录项

  • 作者

    Parks, Sarah Cunegunda.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 156 p.
  • 总页数 156
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号