首页> 外文学位 >Modeling self-similar traffic using matrix exponentials.
【24h】

Modeling self-similar traffic using matrix exponentials.

机译:使用矩阵指数对自相似流量进行建模。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation explores the question of whether it is possible to accurately represent self-similar network traffic exhibiting long-range dependence using a matrix exponential approach. A method for generating synthetic traffic traces which accurately captures both first-order and second-order properties of empirical traces is presented. A matrix exponential distribution, inversely derived from the moments of an empirical trace, was used as the basis for generating random variables whose marginal distribution is indistinguishable from that of the original traffic stream. The autocorrelation structure of the original trace was also preserved through the use of an AR(p) model. This approach provides a numerically accurate, non-heuristic approach to generating a traffic stream whose first and second order statistics match those of a known self-similar traffic trace.;Simulation studies showed that the synthetic traffic produced conservative estimates of both average and maximum buffer usage in infinite buffer systems and for the number of lost packets in finite buffer systems. Although performance does not match that of the empirical trace exactly, it is a vast improvement over the traditional exponential model which dramatically underestimates the buffering requirements for real traffic traces.;Long-range dependence was clearly present in the synthetically generated traffic traces, with more than 1000 lags of significant autocorrelations present in one of the synthetic traces. The heavy-tail of the distribution of the original interarrival times was also successfully captured. Traffic was highly bursty as shown by the aggregated interval counts and that burstiness was preserved across several time scales, an attribute of self-similarity. However, variance-time plots of the data did not show the presence of slowly decaying variances, suggesting that self-similarity was not present. No definitive conclusion was drawn on the presence or absence of self-similarity in the synthetic traces.
机译:本文探讨了是否可以使用矩阵指数方法准确表示表现出长期依赖性的自相似网络流量的问题。提出了一种用于生成合成交通轨迹的方法,该方法可以准确捕获经验轨迹的一阶和二阶特性。从经验迹线的矩取反的矩阵指数分布用作生成随机变量的基础,该随机变量的边际分布与原始流量的边际分布是无法区分的。原始迹线的自相关结构也通过使用AR(p)模型得以保留。该方法提供了一种数值精确,非启发式的方法来生成流量流,该流量流的一阶和二阶统计信息与已知的自相似流量跟踪的统计信息相匹配。仿真研究表明,综合流量对平均和最大缓冲区产生了保守的估计在无限缓冲系统中的使用情况以及有限缓冲系统中丢失数据包的数量。尽管性能与经验跟踪的性能不完全匹配,但它是对传统指数模型的巨大改进,该模型大大低估了实际交通跟踪的缓冲要求。在合成生成的交通跟踪中显然存在长期依赖性,并且更多合成痕迹之一中存在超过1000个明显的自相关的滞后。原始到达时间分布的重尾也被成功捕获。如汇总间隔计数所示,流量是高度突发性的,并且突发性在多个时间范围内得以保留,这是自相似性的一个属性。但是,数据的方差-时间图没有显示出缓慢衰减的方差的存在,表明不存在自相似性。对于合成迹线中是否存在自相似性,没有得出明确的结论。

著录项

  • 作者

    Fitzgerald, Suzanne Crane.;

  • 作者单位

    University of Missouri - Kansas City.;

  • 授予单位 University of Missouri - Kansas City.;
  • 学科 Computer science.;Electrical engineering.
  • 学位 Ph.D.
  • 年度 1996
  • 页码 175 p.
  • 总页数 175
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号